Joint Distributions: Part Two ${ }^{1}$ STA 256: Fall 2018

[^0]
Overview

(1) Independence
(2) Conditional Distributions
(3) Transformations

Independent Random Variables

Discrete or Continuous

The random variables X and Y are said to be independent if

$$
F_{x y}(x, y)=F_{x}(x) F_{y}(y)
$$

For all real x and y.

Theorem (for discrete random variables)

Recalling independence means $F_{x y}(x, y)=F_{x}(x) F_{y}(y)$

The discrete random variables X and Y are independent if and only if

$$
p_{x y}(x, y)=p_{x}(x) p_{y}(y)
$$

for all real x and y.

Theorem (for continuous random variables)

Recalling independence means $F_{x y}(x, y)=F_{x}(x) F_{y}(y)$

The continuous random variables X and Y are independent if and only if

$$
f_{x y}(x, y)=f_{x}(x) f_{y}(y)
$$

for all real x and y.

Conditional Distributions

Of discrete random variables

If X and Y are discrete random variables, the conditional probability mass function of X given $Y=y$ is just a conditional probability. It is given by

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

These are just probabilities of events. For example,

$$
P(X=x, Y=y)=P\{\omega \in \Omega: X(\omega)=x \text { and } Y(\omega)=y\}
$$

We write

$$
p_{x \mid y}(x \mid y)=\frac{p_{x, y}(x, y)}{p_{y}(y)}
$$

Note that $p_{x \mid y}(x \mid y)$ is defined only for y values such that $p_{y}(y)>0$.

Conditional Probability Mass Functions

Both ways

$$
\begin{aligned}
& p_{y \mid x}(y \mid x)=\frac{p_{x, y}(x, y)}{p_{x}(x)} \\
& p_{x \mid y}(x \mid y)=\frac{p_{x, y}(x, y)}{p_{y}(y)}
\end{aligned}
$$

Defined where the denominators are non-zero.

Independence makes sense

In terms of conditional probability mass functions

Suppose X and Y are independent. Then
$p_{x y}(x, y)=p_{x}(x) p_{y}(y)$, and

$$
\begin{aligned}
p_{x \mid y}(x \mid y) & =\frac{p_{x, y}(x, y)}{p_{y}(y)} \\
& =\frac{p_{x}(x) p_{y}(y)}{p_{y}(y)} \\
& =p_{x}(x)
\end{aligned}
$$

So we see that the conditional distribution of X given $Y=y$ is identical for every value of y. It does not depend on the value of y.

The other way

Suppose the conditional distribution of X given $Y=y$ does not depend on the value of y. Then

$$
\begin{aligned}
& p_{x \mid y}(x \mid y)=p_{x}(x) \\
\Leftrightarrow & p_{x}(x)=\frac{p_{x, y}(x, y)}{p_{y}(y)} \\
\Leftrightarrow & p_{x, y}(x, y)=p_{x}(x) p_{y}(y)
\end{aligned}
$$

So that X and Y are independent.

Conditional distributions of continuous random

 variablesIf X and Y are continuous random variables, the conditional probability density of X given $Y=y$ is

$$
f_{x \mid y}(x \mid y)=\frac{f_{x, y}(x, y)}{f_{y}(y)}
$$

- Note that $f_{x \mid y}(x \mid y)$ is defined only for y values such that $f_{y}(y)>0$.
- It looks like we are conditioning on an event of probability zero, but the conditional density is a limit of a conditional probability, as the radius of a tiny region surrounding (x, y) goes to zero.

Conditional Probability Density Functions

$$
\begin{aligned}
& f_{y \mid x}(y \mid x)=\frac{f_{x, y}(x, y)}{f_{x}(x)} \\
& f_{x \mid y}(x \mid y)=\frac{f_{x, y}(x, y)}{f_{y}(y)}
\end{aligned}
$$

Defined where the denominators are non-zero.

Independence makes sense

Suppose X and Y are independent. Then
$f_{x y}(x, y)=f_{x}(x) f_{y}(y)$, and

$$
\begin{aligned}
f_{x \mid y}(x \mid y) & =\frac{f_{x, y}(x, y)}{f_{y}(y)} \\
& =\frac{f_{x}(x) f_{y}(y)}{f_{y}(y)} \\
& =f_{x}(x)
\end{aligned}
$$

And we see that the conditional density of X given $Y=y$ is identical for every value of y. It does not depend on the value of y.

The other way

Suppose the conditional density of X given $Y=y$ does not depend on the value of y. Then

$$
\begin{aligned}
& f_{x \mid y}(x \mid y)=f_{x}(x) \\
\Leftrightarrow & f_{x}(x)=\frac{f_{x, y}(x, y)}{f_{y}(y)} \\
\Leftrightarrow & f_{x, y}(x, y)=f_{x}(x) f_{y}(y)
\end{aligned}
$$

So that X and Y are independent.

Transformations of Jointly Distributed Random Variables

Let $Y=g\left(X_{1}, \ldots, X_{n}\right)$. What is the probability distribution of Y ?
For example,

- X_{1} is the number of jobs completed by employee 1 .
- X_{2} is the number of jobs completed by employee 2 .
- You know the probability distributions of X_{1} and X_{2}.
- You would like to know the probability distribution of $Y=X_{1}+X_{2}$.

Convolutions of discrete random variables

- Let X and Y be discrete random variables.
- The standard case is where they are independent.
- Want probability mass function of $Z=X+Y$.

$$
\begin{aligned}
p_{z}(z) & =P(Z=z) \\
& =P(X+Y=z) \\
& =\sum_{x} P(X+Y=z \mid X=x) P(X=x) \\
& =\sum_{x} P(x+Y=z \mid X=x) P(X=x) \\
& =\sum_{x} P(Y=z-x \mid X=x) P(X=x) \\
& =\sum_{x} P(Y=z-x) P(X=x) \text { by independence } \\
& =\sum_{x} p_{x}(x) p_{y}(z-x)
\end{aligned}
$$

Summarizing

Convolutions of discrete random variables

Let X and Y be independent discrete random variables, and $Z=X+Y$.

$$
p_{z}(z)=\sum_{x} p_{x}(x) p_{y}(z-x)
$$

Two Important results

Proved using the convolution formula

- Let $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ be independent. Then $Z=X+Y \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$.
- Let $X \sim \operatorname{Binomial}\left(n_{1}, p\right)$ and $Y \sim \operatorname{Binomial}\left(n_{2}, p\right)$ be independent. Then $Z=X+Y \sim \operatorname{Binomial}\left(n_{1}+n_{2}, p\right)$

Convolutions of continuous random variables

- Let X and Y be continuous random variables.
- The standard case is where they are independent.
- Want probability density function of $Z=X+Y$.

$$
\begin{aligned}
f_{z}(z) & =\frac{d}{d z} P(Z \leq z) \\
& =\frac{d}{d z} P(X+Y \leq z)
\end{aligned}
$$

Continuing ...

$$
\begin{aligned}
f_{z}(z)= & \frac{d}{d z} P(X+Y \leq z) \\
= & \frac{d}{d z} \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{x y}(x, y) d y d x \\
& t=y+x \quad y=t-x \quad d y=d t \\
& \frac{y}{x+y=z} \begin{aligned}
y=z-x
\end{aligned} \\
& t=y+x \\
& -\infty \\
& \int_{-\infty}^{z} f_{x y}(x, t-x) d t
\end{aligned}
$$

Still continuing, have

$$
\begin{aligned}
f_{z}(z) & =\frac{d}{d z} \int_{-\infty}^{\infty} \int_{-\infty}^{z} f_{x y}(x, t-x) d t d x \\
& =\frac{d}{d z} \int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{x y}(x, t-x) d x d t \\
& =\int_{-\infty}^{\infty} f_{x y}(x, z-x) d x \\
& =\int_{-\infty}^{\infty} f_{x}(x) f_{y}(z-x) d x \text { if } X \text { and } Y \text { are independent. }
\end{aligned}
$$

Compare

For continuous random variables:

$$
f_{z}(z)=\int_{-\infty}^{\infty} f_{x}(x) f_{y}(z-x) d x
$$

For discrete random variables:

$$
p_{z}(z)=\sum_{x} p_{x}(x) p_{y}(z-x)
$$

Of course you need to pay attention to the limits of integration or summation, because $f_{x}(x) f_{y}(z-x)$ may be zero for some x.

- Let X and Y be independent exponential random variables with parameter $\lambda>0$. Then
$Z=X+Y \sim \operatorname{Gamma}(\alpha=2, \lambda)$.
- Let $X \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}\right)$ and $Y \sim \operatorname{Normal}\left(\mu_{2}, \sigma_{2}\right)$ be independent. Then

$$
Z=X+Y \sim \operatorname{Normal}\left(\mu_{1}+\mu_{2}, \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)
$$

The Jacobian Method

- X_{1} and X_{2} are continuous random variables.
- $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$.
- Want $f_{y_{1} y_{2}}\left(y_{1}, y_{2}\right)$

Solve for x_{1} and x_{2}, obtaining $x_{1}\left(y_{1}, y_{2}\right)$ and $x_{2}\left(y_{1}, y_{2}\right)$. Then

$$
f_{y_{1} y_{2}}\left(y_{1}, y_{2}\right)=f_{x_{1} x_{2}}\left(x_{1}\left(y_{1}, y_{2}\right), x_{2}\left(y_{1}, y_{2}\right)\right) \cdot a b s \left\lvert\, \begin{array}{cc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right.
$$

The determinant $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.

More about the Jacobian method
 $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$

- It follows directly from a change of variables formula in multi-variable integration. The proof is omitted.
- It must be possible to solve $y_{1}=g_{1}\left(x_{1}, x_{2}\right)$ and $y_{2}=g_{2}\left(x_{1}, x_{2}\right)$ for x_{1} and x_{2}.
- That is, the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ must be one to one (injective).
- Frequently you are only interested in Y_{1}, and $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$ is chosen to make reverse solution easy.
- The partial derivatives must all be continuous, except possibly on a set of probability zero (they almost always are).
- It extends naturally to higher dimension.

Change from rectangular to polar co-ordinates

By the Jacobian method

A point on the plane may be represented as (x, y), or

An angle θ and a radius r.

Change of variables

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta) \\
& x^{2}+y^{2}=r^{2}
\end{aligned}
$$

- As x and y range from $-\infty$ to ∞,
- r goes from 0 to ∞
- And θ goes from θ to 2π.

Integral $\int_{0}^{\infty} \int_{0}^{\infty} f_{x, y}(x, y) d x d y$

Change of variables:

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} f_{x, y}(x, y) d x d y \\
= & \int_{0}^{\pi / 2} \int_{0}^{\infty} f_{x, y}(r \cos \theta, r \sin \theta) a b s\left|\begin{array}{cc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right| d r d \theta
\end{aligned}
$$

Evaluate the determinant

(with $x=r \cos (\theta)$ and $y=r \sin (\theta)$)

$$
\begin{aligned}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{aligned}\left|=\left|\begin{array}{cc}
\frac{\partial r \cos (\theta)}{\partial r} & \frac{\partial r \cos (\theta)}{\partial \theta} \\
\frac{\partial r \sin (\theta)}{\partial r} & \frac{\partial r \sin (\theta)}{\partial \theta}
\end{array}\right|\right.
$$

So the integral is

$\int_{0}^{\infty} \int_{0}^{\infty} f_{x, y}(x, y) d x d y=\int_{0}^{\pi / 2} \int_{0}^{\infty} f_{x, y}(r \cos \theta, r \sin \theta) r d r d \theta$

- The standard formula for change from rectangular to polar co-ordinates is $d x d y=r d r d \theta$.
- It comes from a Jacobian.
- Other limits of integration are possible.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/256f18

[^0]: ${ }^{1}$ This slide show is an open-source document. See last slide for copyright information.

