Joint Distributions: Part Two¹ STA 256: Fall 2018

 $^{^1\}mathrm{This}$ slide show is an open-source document. See last slide for copyright information.

Independent Random Variables Discrete or Continuous

The random variables X and Y are said to be *independent* if

$$F_{xy}(x,y) = F_x(x)F_y(y)$$

For all real x and y.

Theorem (for discrete random variables) Recalling independence means $F_{xy}(x, y) = F_x(x)F_y(y)$

The discrete random variables X and Y are independent if and only if

$$p_{xy}(x,y) = p_x(x) p_y(y)$$

for all real x and y.

Theorem (for continuous random variables) Recalling independence means $F_{xy}(x, y) = F_x(x)F_y(y)$

The continuous random variables X and Y are independent if and only if

$$f_{xy}(x,y) = f_x(x) f_y(y)$$

for all real x and y.

Conditional Distributions Of discrete random variables

If X and Y are discrete random variables, the conditional probability mass function of X given Y = y is just a conditional probability. It is given by

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

These are just probabilities of events. For example,

$$P(X = x, Y = y) = P\{\omega \in \Omega : X(\omega) = x \text{ and } Y(\omega) = y\}$$

We write

$$p_{x|y}(x|y) = \frac{p_{x,y}(x,y)}{p_y(y)}$$

Note that $p_{x|y}(x|y)$ is defined only for y values such that $p_y(y) > 0$.

Conditional Probability Mass Functions Both ways

$$p_{y|x}(y|x) = \frac{p_{x,y}(x,y)}{p_x(x)}$$

$$p_{x|y}(x|y) = \frac{p_{x,y}(x,y)}{p_y(y)}$$

Defined where the denominators are non-zero.

Independence makes sense In terms of conditional probability mass functions

Suppose X and Y are independent. Then $p_{xy}(x,y) = p_x(x)p_y(y)$, and

$$p_{x|y}(x|y) = \frac{p_{x,y}(x,y)}{p_y(y)}$$
$$= \frac{p_x(x)p_y(y)}{p_y(y)}$$
$$= p_x(x)$$

So we see that the conditional distribution of X given Y = y is identical for every value of y. It does not depend on the value of y.

The other way

Suppose the conditional distribution of X given Y = y does not depend on the value of y. Then

$$\begin{split} p_{x|y}(x|y) &= p_x(x) \\ \Leftrightarrow \quad p_x(x) &= \frac{p_{x,y}(x,y)}{p_y(y)} \\ \Leftrightarrow \quad p_{x,y}(x,y) &= p_x(x) \, p_y(y) \end{split}$$

So that X and Y are independent.

Conditional distributions of continuous random variables

If X and Y are continuous random variables, the conditional probability density of X given Y = y is

$$f_{x|y}(x|y) = \frac{f_{x,y}(x,y)}{f_y(y)}$$

- Note that $f_{x|y}(x|y)$ is defined only for y values such that $f_y(y) > 0$.
- It looks like we are conditioning on an event of probability zero, but the conditional density is a limit of a conditional probability, as the radius of a tiny region surrounding (x, y) goes to zero.

Conditional Probability Density Functions Both ways

$$f_{y|x}(y|x) = \frac{f_{x,y}(x,y)}{f_x(x)}$$

$$f_{x|y}(x|y) = \frac{f_{x,y}(x,y)}{f_y(y)}$$

Defined where the denominators are non-zero.

Independence makes sense In terms of conditional densities

Suppose X and Y are independent. Then $f_{xy}(x,y) = f_x(x)f_y(y)$, and

$$f_{x|y}(x|y) = \frac{f_{x,y}(x,y)}{f_y(y)}$$
$$= \frac{f_x(x)f_y(y)}{f_y(y)}$$
$$= f_x(x)$$

And we see that the conditional density of X given Y = y is identical for every value of y. It does not depend on the value of y.

The other way

Suppose the conditional density of X given Y = y does not depend on the value of y. Then

$$\begin{split} f_{x|y}(x|y) &= f_x(x) \\ \Leftrightarrow & f_x(x) = \frac{f_{x,y}(x,y)}{f_y(y)} \\ \Leftrightarrow & f_{x,y}(x,y) = f_x(x) \, f_y(y) \end{split}$$

So that X and Y are independent.

Transformations of Jointly Distributed Random Variables

Let $Y = g(X_1, \ldots, X_n)$. What is the probability distribution of Y?

For example,

- X_1 is the number of jobs completed by employee 1.
- X_2 is the number of jobs completed by employee 2.
- You know the probability distributions of X_1 and X_2 .
- You would like to know the probability distribution of $Y = X_1 + X_2$.

Convolutions of discrete random variables

- Let X and Y be discrete random variables.
- The standard case is where they are independent.
- Want probability mass function of Z = X + Y.

$$p_{z}(z) = P(Z = z)$$

$$= P(X + Y = z)$$

$$= \sum_{x} P(X + Y = z | X = x) P(X = x)$$

$$= \sum_{x} P(x + Y = z | X = x) P(X = x)$$

$$= \sum_{x} P(Y = z - x | X = x) P(X = x)$$

$$= \sum_{x} P(Y = z - x) P(X = x) \text{ by independence}$$

$$= \sum_{x} p_{x}(x) p_{y}(z - x)$$

Summarizing Convolutions of discrete random variables

Let X and Y be *independent* discrete random variables, and Z = X + Y.

$$p_z(z) = \sum_x p_x(x) p_y(z-x)$$

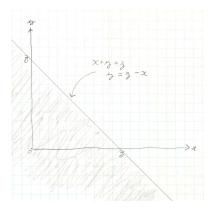
Two Important results Proved using the convolution formula

- Let $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$ be independent. Then $Z = X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.
- Let $X \sim \text{Binomial}(n_1, p)$ and $Y \sim \text{Binomial}(n_2, p)$ be independent. Then $Z = X + Y \sim \text{Binomial}(n_1 + n_2, p)$

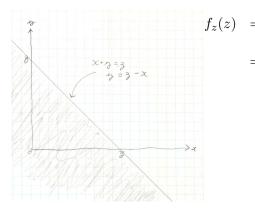
Convolutions of *continuous* random variables

- Let X and Y be continuous random variables.
- The standard case is where they are independent.
- Want probability density function of Z = X + Y.

$$f_z(z) = \frac{d}{dz} P(Z \le z)$$
$$= \frac{d}{dz} P(X + Y \le z)$$



Continuing ...



$$= \frac{d}{dz} P(X + Y \le z)$$
$$= \frac{d}{dz} \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{xy}(x, y) \, dy \, dx$$

$$t = y + x$$
 $y = t - x$ $dy = dt$

y	t = y + x
z - x	z
$-\infty$	$-\infty$
CZ C	

 $\int_{-\infty}^{\infty} f_{xy}(x,t-x) \, dt$

Still continuing, have

$$f_{z}(z) = \frac{d}{dz} \int_{-\infty}^{\infty} \int_{-\infty}^{z} f_{xy}(x, t - x) dt dx$$

$$= \frac{d}{dz} \int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{xy}(x, t - x) dx dt$$

$$= \int_{-\infty}^{\infty} f_{xy}(x, z - x) dx$$

$$= \int_{-\infty}^{\infty} f_{x}(x) f_{y}(z - x) dx \text{ if } X \text{ and } Y \text{ are independent.}$$

For continuous random variables:

$$f_z(z) = \int_{-\infty}^{\infty} f_x(x) f_y(z - x) \, dx$$

For discrete random variables:

$$p_z(z) = \sum_x p_x(x) p_y(z - x)$$

Of course you need to pay attention to the limits of integration or summation, because $f_x(x)f_y(z-x)$ may be zero for some x. Two Important results for continuous random variables Proved using the convolution formula

- Let X and Y be independent exponential random variables with parameter λ > 0. Then Z = X + Y ~ Gamma(α = 2, λ).
- Let $X \sim \text{Normal}(\mu_1, \sigma_1)$ and $Y \sim \text{Normal}(\mu_2, \sigma_2)$ be independent. Then

$$Z = X + Y \sim \text{Normal}\left(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right).$$

The Jacobian Method

- X_1 and X_2 are continuous random variables.
- $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$.
- Want $f_{y_1y_2}(y_1, y_2)$

Solve for x_1 and x_2 , obtaining $x_1(y_1, y_2)$ and $x_2(y_1, y_2)$. Then

$$f_{y_1y_2}(y_1, y_2) = f_{x_1x_2}(x_1(y_1, y_2), x_2(y_1, y_2)) \cdot abs \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$

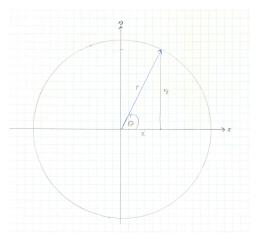
The determinant
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

More about the Jacobian method $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$

- It follows directly from a change of variables formula in multi-variable integration. The proof is omitted.
- It must be possible to solve $y_1 = g_1(x_1, x_2)$ and $y_2 = g_2(x_1, x_2)$ for x_1 and x_2 .
- That is, the function $g: \mathbb{R}^2 \to \mathbb{R}^2$ must be one to one (injective).
- Frequently you are only interested in Y_1 , and $Y_2 = g_2(X_1, X_2)$ is chosen to make reverse solution easy.
- The partial derivatives must all be continuous, except possibly on a set of probability zero (they almost always are).
- It extends naturally to higher dimension.

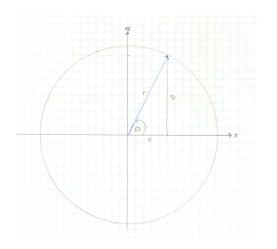
Change from rectangular to polar co-ordinates By the Jacobian method

A point on the plane may be represented as (x, y), or



An angle θ and a radius r.

Change of variables

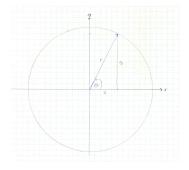


- $x = r \cos(\theta)$ $y = r \sin(\theta)$ $x^{2} + y^{2} = r^{2}$
- As x and y range from $-\infty$ to ∞ ,
- r goes from 0 to ∞
- And θ goes from θ to 2π .

Integral $\int_0^\infty \int_0^\infty f_{x,y}(x,y) \, dx \, dy$

Change of variables:

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$



$$\int_{0}^{\infty} \int_{0}^{\infty} f_{x,y}(x,y) \, dx \, dy$$
$$= \int_{0}^{\pi/2} \int_{0}^{\infty} f_{x,y}(r\cos\theta, r\sin\theta) \, abs \left| \begin{array}{c} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{array} \right| \, dr \, d\theta$$

Evaluate the determinant (with $x = r \cos(\theta)$ and $y = r \sin(\theta)$)

$$\frac{\partial x}{\partial r} \left. \frac{\partial x}{\partial \theta} \right|_{\partial r} = \begin{vmatrix} \frac{\partial r \cos(\theta)}{\partial r} & \frac{\partial r \cos(\theta)}{\partial \theta} \\ \frac{\partial r \sin(\theta)}{\partial r} & \frac{\partial r \sin(\theta)}{\partial \theta} \end{vmatrix}$$

$$= \begin{vmatrix} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{vmatrix}$$

$$= r \cos^2 \theta - -r \sin^2 \theta$$

$$= r(\sin^2 \theta + \cos^2 \theta)$$

$$= r$$

So the integral is

$$\int_0^\infty \int_0^\infty f_{x,y}(x,y) \, dx \, dy = \int_0^{\pi/2} \int_0^\infty f_{x,y}(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

- The standard formula for change from rectangular to polar co-ordinates is $dx dy = r dr d\theta$.
- It comes from a Jacobian.
- Other limits of integration are possible.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/256f18