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Independence Conditional Distributions Transformations

Independent Random Variables
Discrete or Continuous

The random variables X and Y are said to be independent if

Fxy(x, y) = Fx(x)Fy(y)

For all real x and y.
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Independence Conditional Distributions Transformations

Theorem (for discrete random variables)
Recalling independence means Fxy(x, y) = Fx(x)Fy(y)

The discrete random variables X and Y are independent if and

only if

pxy(x, y) = px(x) py(y)

for all real x and y.
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Independence Conditional Distributions Transformations

Theorem (for continuous random variables)
Recalling independence means Fxy(x, y) = Fx(x)Fy(y)

The continuous random variables X and Y are independent if

and only if

fxy(x, y) = fx(x) fy(y)

for all real x and y.
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Independence Conditional Distributions Transformations

Conditional Distributions
Of discrete random variables

If X and Y are discrete random variables, the conditional
probability mass function of X given Y = y is just a conditional
probability. It is given by

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

These are just probabilities of events. For example,

P (X = x, Y = y) = P{ω ∈ Ω : X(ω) = x and Y (ω) = y}

We write

px|y(x|y) =
px,y(x, y)

py(y)

Note that px|y(x|y) is defined only for y values such that
py(y) > 0.
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Independence Conditional Distributions Transformations

Conditional Probability Mass Functions
Both ways

py|x(y|x) =
px,y(x, y)

px(x)

px|y(x|y) =
px,y(x, y)

py(y)

Defined where the denominators are non-zero.
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Independence Conditional Distributions Transformations

Independence makes sense
In terms of conditional probability mass functions

Suppose X and Y are independent. Then
pxy(x, y) = px(x)py(y), and

px|y(x|y) =
px,y(x, y)

py(y)

=
px(x)py(y)

py(y)

= px(x)

So we see that the conditional distribution of X given Y = y is
identical for every value of y. It does not depend on the value of
y.
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Independence Conditional Distributions Transformations

The other way

Suppose the conditional distribution of X given Y = y does not
depend on the value of y. Then

px|y(x|y) = px(x)

⇔ px(x) =
px,y(x, y)

py(y)

⇔ px,y(x, y) = px(x) py(y)

So that X and Y are independent.
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Independence Conditional Distributions Transformations

Conditional distributions of continuous random
variables

If X and Y are continuous random variables, the conditional
probability density of X given Y = y is

fx|y(x|y) =
fx,y(x, y)

fy(y)

Note that fx|y(x|y) is defined only for y values such that
fy(y) > 0.

It looks like we are conditioning on an event of probability
zero, but the conditional density is a limit of a conditional
probability, as the radius of a tiny region surrounding
(x, y) goes to zero.
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Independence Conditional Distributions Transformations

Conditional Probability Density Functions
Both ways

fy|x(y|x) =
fx,y(x, y)

fx(x)

fx|y(x|y) =
fx,y(x, y)

fy(y)

Defined where the denominators are non-zero.
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Independence Conditional Distributions Transformations

Independence makes sense
In terms of conditional densities

Suppose X and Y are independent. Then
fxy(x, y) = fx(x)fy(y), and

fx|y(x|y) =
fx,y(x, y)

fy(y)

=
fx(x)fy(y)

fy(y)

= fx(x)

And we see that the conditional density of X given Y = y is
identical for every value of y. It does not depend on the value of
y.
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Independence Conditional Distributions Transformations

The other way

Suppose the conditional density of X given Y = y does not
depend on the value of y. Then

fx|y(x|y) = fx(x)

⇔ fx(x) =
fx,y(x, y)

fy(y)

⇔ fx,y(x, y) = fx(x) fy(y)

So that X and Y are independent.
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Independence Conditional Distributions Transformations

Transformations of Jointly Distributed Random
Variables

Let Y = g(X1, . . . , Xn). What is the probability distribution
of Y ?
For example,

X1 is the number of jobs completed by employee 1.

X2 is the number of jobs completed by employee 2.

You know the probability distributions of X1 and X2.

You would like to know the probability distribution of
Y = X1 +X2.
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Independence Conditional Distributions Transformations

Convolutions of discrete random variables

Let X and Y be discrete random variables.
The standard case is where they are independent.
Want probability mass function of Z = X + Y .

pz(z) = P (Z = z)

= P (X + Y = z)

=
∑
x

P (X + Y = z|X = x)P (X = x)

=
∑
x

P (x+ Y = z|X = x)P (X = x)

=
∑
x

P (Y = z − x|X = x)P (X = x)

=
∑
x

P (Y = z − x)P (X = x) by independence

=
∑
x

px(x)py(z − x)
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Independence Conditional Distributions Transformations

Summarizing
Convolutions of discrete random variables

Let X and Y be independent discrete random variables, and

Z = X + Y .

pz(z) =
∑
x

px(x)py(z − x)
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Independence Conditional Distributions Transformations

Two Important results
Proved using the convolution formula

Let X ∼ Poisson(λ1) and Y ∼ Poisson(λ2) be independent.
Then Z = X + Y ∼ Poisson(λ1 + λ2).

Let X ∼ Binomial(n1, p) and Y ∼ Binomial(n2, p) be
independent. Then Z = X + Y ∼ Binomial(n1 + n2, p)

17 / 30



Independence Conditional Distributions Transformations

Convolutions of continuous random variables

Let X and Y be continuous random variables.

The standard case is where they are independent.

Want probability density function of Z = X + Y .

fz(z) =
d

dz
P (Z ≤ z)

=
d

dz
P (X + Y ≤ z)

18 / 30



Independence Conditional Distributions Transformations

Continuing . . .

fz(z) =
d

dz
P (X + Y ≤ z)

=
d

dz

∫ ∞
−∞

∫ z−x

−∞
fxy(x, y) dy dx

t = y + x y = t− x dy = dt

y t = y + x

z − x z
−∞ −∞∫ z
−∞ fxy(x, t− x) dt
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Independence Conditional Distributions Transformations

Still continuing, have

fz(z) =
d

dz

∫ ∞
−∞

∫ z

−∞
fxy(x, t− x) dt dx

=
d

dz

∫ z

−∞

∫ ∞
−∞

fxy(x, t− x) dx dt

=

∫ ∞
−∞

fxy(x, z − x) dx

=

∫ ∞
−∞

fx(x)fy(z − x) dx if X and Y are independent.
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Independence Conditional Distributions Transformations

Compare

For continuous random variables:

fz(z) =

∫ ∞
−∞

fx(x)fy(z − x) dx

For discrete random variables:

pz(z) =
∑
x

px(x)py(z − x)

Of course you need to pay attention to the limits of integration
or summation, because fx(x)fy(z − x) may be zero for some x.
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Independence Conditional Distributions Transformations

Two Important results for continuous random variables
Proved using the convolution formula

Let X and Y be independent exponential random variables
with parameter λ > 0. Then
Z = X + Y ∼ Gamma(α = 2, λ).

Let X ∼ Normal(µ1, σ1) and Y ∼ Normal(µ2, σ2) be
independent. Then

Z = X + Y ∼ Normal
(
µ1 + µ2,

√
σ21 + σ22

)
.
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Independence Conditional Distributions Transformations

The Jacobian Method

X1 and X2 are continuous random variables.

Y1 = g1(X1, X2) and Y2 = g2(X1, X2).

Want fy1y2(y1, y2)

Solve for x1 and x2, obtaining x1(y1, y2) and x2(y1, y2). Then

fy1y2(y1, y2) = fx1x2(x1(y1, y2), x2(y1, y2) ) · abs

∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣
The determinant

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.
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Independence Conditional Distributions Transformations

More about the Jacobian method
Y1 = g1(X1, X2) and Y2 = g2(X1, X2)

It follows directly from a change of variables formula in
multi-variable integration. The proof is omitted.

It must be possible to solve y1 = g1(x1, x2) and
y2 = g2(x1, x2) for x1 and x2.

That is, the function g : R2 → R2 must be one to one
(injective).

Frequently you are only interested in Y1, and
Y2 = g2(X1, X2) is chosen to make reverse solution easy.

The partial derivatives must all be continuous, except
possibly on a set of probability zero (they almost always
are).

It extends naturally to higher dimension.
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Independence Conditional Distributions Transformations

Change from rectangular to polar co-ordinates
By the Jacobian method

A point on the plane may be represented as (x, y), or

An angle θ and a radius r.
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Independence Conditional Distributions Transformations

Change of variables

x = r cos(θ)

y = r sin(θ)

x2 + y2 = r2

As x and y range
from −∞ to ∞,

r goes from 0 to ∞
And θ goes from θ to
2π.
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Independence Conditional Distributions Transformations

Integral
∫∞

0

∫∞
0 fx,y(x, y) dx dy

Change of variables:

x = r cos(θ)

y = r sin(θ)

∫ ∞
0

∫ ∞
0

fx,y(x, y) dx dy

=

∫ π/2

0

∫ ∞
0

fx,y(r cos θ, r sin θ) abs

∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣ dr dθ
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Independence Conditional Distributions Transformations

Evaluate the determinant
(with x = r cos(θ) and y = r sin(θ))

∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∂ r cos(θ)

∂r
∂ r cos(θ)

∂θ

∂ r sin(θ)
∂r

∂ r sin(θ)
∂θ

∣∣∣∣∣∣
=

∣∣∣∣ cos(θ) −r sin(θ)
sin(θ) r cos(θ)

∣∣∣∣
= r cos2 θ −−r sin2 θ

= r(sin2 θ + cos2 θ)

= r
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Independence Conditional Distributions Transformations

So the integral is

∫ ∞
0

∫ ∞
0

fx,y(x, y) dx dy =

∫ π/2

0

∫ ∞
0

fx,y(r cos θ, r sin θ) r dr dθ

The standard formula for change from rectangular to polar
co-ordinates is dx dy = r dr dθ.

It comes from a Jacobian.

Other limits of integration are possible.
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Independence Conditional Distributions Transformations

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:

http://www.utstat.toronto.edu/∼brunner/oldclass/256f18
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