Joint Distributions: Part One ${ }^{1}$ STA 256: Fall 2018

[^0]
Overview

(1) Joint Distributions
(2) Discrete Distributions
(3) Continuous Distributions
(4) Independence
(5) Conditional Distributions

Joint Distributions: The idea

- A single random variable is a measurement conducted on the elements of the sample space.
- More than one measurement can be taken on the same $\omega \in \Omega$.
- For example, X is height, and Y is weight.
- Of course more than two measurements are possible.
- Most real data sets have dozens of measurements on each sampling unit.
- Technically, a pair of jointly distributed random variables is a function from Ω to \mathbb{R}^{2}.

Probability

As with single random variables, the joint probability distribution of a set of random variables comes from the underlying probability distribution defined on the subsets of Ω.

$$
P((X, Y) \in C)=P\{\omega \in \Omega:(X(\omega), Y(\omega)) \in C\}
$$

Joint Cumulative Distribution Functions

Whether X and Y are discrete or continuous, their joint distribution is defined by

$$
F(x, y)=P\{X \leq x, Y \leq y\}
$$

Joint Probability Mass Function

Frequency Function

$$
p(x, y)=P(X=x, Y=y)
$$

Example

The discrete random variables X and Y have joint distribution

	$x=1$	$x=2$	$x=3$
$y=1$	$3 / 12$	$1 / 12$	$3 / 12$
$y=2$	$1 / 12$	$3 / 12$	$1 / 12$

- What is $P(Y=1) ? p_{y}(1)=\frac{3}{12}+\frac{1}{12}+\frac{3}{12}=\frac{7}{12}$
- What is $P(Y=2) ? p_{y}(2)=\frac{1}{12}+\frac{3}{12}+\frac{1}{12}=\frac{5}{12}$
- What is $P(X=2) ? p_{x}(2)=\frac{1}{12}+\frac{3}{12}=\frac{4}{12}$

Marginal distributions

	$x=1$	$x=2$	$x=3$	$p_{y}(y)$
$y=1$	$3 / 12$	$1 / 12$	$3 / 12$	$7 / 12$
$y=2$	$1 / 12$	$3 / 12$	$1 / 12$	$5 / 12$
$p_{x}(x)$	$4 / 12$	$4 / 12$	$4 / 12$	1.00

Give the marginal distribution of Y.

$$
p_{y}(y)=\left\{\begin{array}{cl}
\frac{7}{12} & \text { for } y=1 \\
\frac{5}{12} & \text { for } y=2 \\
0 & \text { Otherwise }
\end{array}\right.
$$

Notation: $p_{x y}(1,2)=1 / 12$

In general

- $p_{x}(x)=\sum_{y} p_{x y}(x, y)$
- $p_{y}(y)=\sum_{x} p_{x y}(x, y)$
- Two-dimensional, three-dimensional marginals etc. are obtained by summing over the other variables.
- Implicitly, the summation is over values where the joint probability is non-zero.

$$
p_{x}(x)=\sum_{\{y: p(x, y)>0\}} p(x, y)
$$

Multinomial Distribution

Begin with an example

- A six-sided die is rolled n times.
- The die is not necessarily fair.
- Probabilities are p_{j} for $j=1, \ldots, 6$.
- Want probability of n_{1} ones, \ldots, n_{6} sixes.
- The probability of any particular string is $p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} p_{4}^{n_{4}} p_{5}^{n_{5}} p_{6}^{n_{6}}$.
- How many ways are there to choose n_{1} positions for the ones, n_{2} positions for the twos, etc.?
- $\binom{n}{n_{1} \cdots}=\frac{n!}{n_{1}!\cdots} \begin{aligned} & n 6\end{aligned}$, so
$P\left(X_{1}=n_{1}, X_{2}-n_{2}, \ldots, X_{6}=n_{6}\right)=\binom{n}{n_{1} \cdots} n_{6} . p_{1}^{n_{1}} \cdots p_{6}^{n_{6}}$

Multinomial Distribution in General

$$
p\left(n_{1}, \ldots, n_{r}\right)=\left\{\begin{array}{cl}
\binom{n}{n_{1} \cdots n_{r}} p_{1}^{n_{1}} \cdots p_{r}^{n_{r}} & \text { for }\left(n_{1}, \ldots, n_{r}\right) \in S \\
0 & \text { Otherwise }
\end{array}\right.
$$

where $\left(n_{1}, \ldots, n_{r}\right) \in S$ means

$$
\begin{aligned}
& n_{j} \geq 0 \text { for } j=1, \ldots, r \text { and } \\
& \sum_{j=1}^{r} n_{j}=n .
\end{aligned}
$$

If we count the number of people (in a random sample) in r different occupational categories, the multinomial is a reasonable model for the counts.

Continuous Jointly Distributed Random Variables

- Joint density of (X, Y) is not a curve, but a surface.

- Probability is volume rather than area.
- This is multivariable calculus.
- We need a quick lesson.

Partial Derivatives

- Think of holding x fixed at some value, disregarding all other points.
- Literally slice the surface with a plane at x.
- The cut mark on the surface is a function of y.
- It's just $F(x, y)$ treating x as a fixed constant.
- You can differentiate that function.

Vocabulary: "Partial derivatives"

- Consider a function of several variables, like $f\left(x_{1}, x_{2}, x_{3}\right)$.
- Differentiate with respect to one of the variables, treating the others as fixed constants.
- Call the result a partial derivative.

Notation for partial derivatives

- $\frac{\partial}{\partial x_{2}} f\left(x_{1}, x_{2}, x_{3}\right)$ or $\frac{\partial f}{\partial x_{2}}$ means differentiate $f\left(x_{1}, x_{2}, x_{3}\right)$ with respect to x_{2}, holding x_{1} and x_{3} constant.
- $\frac{\partial^{2}}{\partial x_{1} \partial x_{2}} f\left(x_{1}, x_{2}, x_{3}\right)$ or $\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}$ means first differentiate with respect to x_{2} holding x_{1} and x_{3} constant, and then differentiate the result with respect to x_{1}, holding x_{2} and x_{3} constant.
- When the derivatives are continuous functions, order of partial differentiation does not matter.
- $\frac{\partial^{2}}{\partial x_{1}^{2}} f\left(x_{1}, x_{2}, x_{3}\right)$ or $\frac{\partial^{2} f}{\partial x_{1}^{2}}$ means differentiate twice with respect to x_{1}, holding x_{2} and x_{3} constant.

Example: $g\left(x_{1}, x_{2}\right)=x_{1}^{2} e^{7 x_{2}}$

$$
\begin{aligned}
\frac{\partial g}{\partial x_{1}} & =2 x_{1} e^{7 x_{2}} \\
\frac{\partial^{2} g}{\partial x_{1} \partial x_{2}} & =\frac{\partial}{\partial x_{1}} x_{1}^{2} 7 e^{7 x_{2}} \\
& =14 x_{1} e^{7 x_{2}} \\
\frac{\partial^{2} g}{\partial x_{2}^{2}} & =\frac{\partial}{\partial x_{2}} x_{1}^{2} 7 e^{7 x_{2}} \\
& =7 x_{1}^{2} \frac{\partial}{\partial x_{2}} e^{7 x_{2}} \\
& =49 x_{1}^{2} e^{7 x_{2}}
\end{aligned}
$$

Multiple integration

$\iint_{A} f(x, y) d x d y$ is the volume under the surface $f(x, y)$, over the region A in the x, y plane.

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d x\right) d y
$$

Recipe:

- Do the inner integral first, integrating from c to d, and treating y as a fixed constant.
- Then integrate the resulting function of y, from a to b.
- This yields volume under the surface $f(x, y)$, sitting over the region defined by $c<x<d$ and $a<y<b$.

Multiple integration can be pretty mechanical $f(x, y) d x) d y$

- Do the innermost integral first and work your way out, treating the other variables as constants at each step.
- If you are integrating over finite intervals, switch order of integration freely.
- If the quantity being integrated is non-negative, you may switch order of integration and the result is the same, even if the answer is "infinity." Thank you, Mr. Fubini.
- There is one thing you often need to watch out for.

Region of integration

$$
f(x, y) d x) d y
$$

- If the function $f(x, y)$ is a case function that is zero for some values of x and y, you need to take care that you are integrating over the correct region.
- You may need to sketch the region of integration.

Example

$$
f(x, y)= \begin{cases}x y^{2} & \text { for } x<y \\ 0 & \text { elsewhere }\end{cases}
$$

Find $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$.
$\int_{0}^{1} \int_{0}^{1} x y^{2} d y d x=\frac{1}{6}$, but that's not the right answer.
$f(x, y)$ only equals $x y^{2}$ for $x<y$.

Sketch the region of integration

As x goes from 0 to $1, y$ goes from x to 1 .

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=\int_{0}^{1} \int_{x}^{1} x y^{2} d y d x
$$

The calculation

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x & =\int_{0}^{1} \int_{x}^{1} x y^{2} d y d x \\
& =\int_{0}^{1} x \int_{x}^{1} y^{2} d y d x \\
& =\left.\int_{0}^{1} x \frac{y^{3}}{3}\right|_{x} ^{1} d x \\
& =\frac{1}{3} \int_{0}^{1} x\left(1-x^{3}\right) d x \\
& =\frac{1}{3} \int_{0}^{1}\left(x-x^{4}\right) d x \\
& =\left.\frac{1}{3}\left(\frac{x^{2}}{2}-\frac{x^{5}}{5}\right)\right|_{0} ^{1} \\
& =\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}\right)=\frac{1}{10}
\end{aligned}
$$

And not $\frac{1}{6}$. More examples will be given.

Joint CDFs

Let the continuous random variables X and Y have joint density function $f(x, y)$. Then
$F(x, y)=P(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d t d s$
The notation extends to larger numbers of variables.

Fundamental Theorem of Calculus

$$
f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

At points where the derivatives exist and $f(x, y)$ is continuous.

Marginal distributions and densities

Integrate out the other variable(s)

$$
\begin{aligned}
f_{x}(x) & =\int_{-\infty}^{\infty} f_{x y}(x, y) d y \\
f_{y}(y) & =\int_{-\infty}^{\infty} f_{x y}(x, y) d x
\end{aligned}
$$

Analogous to $p_{x}(x)=\sum_{y} p_{x y}(x, y)$

Marginal cumulative distribution functions

Show $\left.\lim _{y \rightarrow \infty} F_{x y}(x, y)\right)=F_{x}(x)$. Use Fubini's Theorem, which says you can always switch order of integration as long as what you are integrating is non-negative.

$$
\begin{aligned}
\left.\lim _{y \rightarrow \infty} F_{x y}(x, y)\right) & =\lim _{y \rightarrow \infty} \int_{-\infty}^{x} \int_{-\infty}^{y} f_{x y}(s, t) d t d s \\
& =\lim _{y \rightarrow \infty} \int_{-\infty}^{y} \int_{-\infty}^{x} f_{x y}(s, t) d s d t \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{x} f_{x y}(s, t) d s d t \\
& =\int_{-\infty}^{x} \int_{-\infty}^{\infty} f_{x y}(s, t) d t d s \\
& =\int_{-\infty}^{x} f_{x}(s) d s \\
& =F_{x}(x)
\end{aligned}
$$

Don't just move limits through integrals.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/256f18

[^0]: ${ }^{1}$ This slide show is an open-source document. See last slide for copyright information.

