Foundations of Probability ${ }^{1}$ STA 256: Fall 2018

[^0]
The idea

Informally, a probability is a number between zero and one indicating how likely an event is to occur.

Axioms of Probability
 Kolmogorov (1933)

A probability measure is a function P from subsets of Ω to the real numbers, satisfying
(1) $P(\Omega)=1$
(2) $P(A) \geq 0$ for any $A \subset \Omega$
(3) If $A_{i} \cap A_{j}=\emptyset$ for $A_{1}, A_{2} \ldots$, where $i \neq j$, $P\left(\cup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} P\left(A_{k}\right)$

Properties of Probability

A. $P\left(A^{c}\right)=1-P(A)$
B. $P(\emptyset)=0$
C. If $A \subseteq B$ then $P(A) \leq P(B)$
D. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ (The addition law)

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/~ ${ }^{\text {brunner/oldclass/256f18 }}$

[^0]: ${ }^{1}$ This slide show is an open-source document. See last slide for copyright information.

