Foundations of Probability¹ STA 256: Fall 2018

 $^{^1\}mathrm{This}$ slide show is an open-source document. See last slide for copyright information.

Informally, a probability is a number between zero and one indicating how likely an event is to occur.

A probability measure is a function P from subsets of Ω to the real numbers, satisfying

$$P(\Omega) = 1$$

$$P(A) \ge 0 \text{ for any } A \subset \Omega$$

③ If
$$A_i \cap A_j = \emptyset$$
 for $A_1, A_2...$, where $i \neq j$,
 $P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$

A.
$$P(A^c) = 1 - P(A)$$

B. $P(\emptyset) = 0$
C. If $A \subseteq B$ then $P(A) \leq P(B)$
D. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ (The addition law)

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/256f18