Sample Questions: Expected Value, Variance and Covariance

STA256 Fall 2018. Copyright information is at the end of the last page.

1. Let X have a continuous uniform distribution on (a, b). Calculate $E(X)$.
2. Let $X \sim \operatorname{Poisson}(\lambda)$. Calculate $E(X)$.
3. Let the continuous random variable X have density $f(x)= \begin{cases}\frac{1}{x^{2}} & \text { for } x \geq 1 \\ 0 & \text { otherwise }\end{cases}$
(a) Verify that $f(x)$ integrates to one.
(b) Calculate $E(X)$.
4. Let $X \sim N(\mu, \sigma)$. Calculate $E(X)$.
5. Let X have a binomial distribution with parameters n and p. Calculate $E(X)$.
6. Let X have a Gamma distribution with parameters α and λ. Calculate $E\left(X^{k}\right)$.
7. Let X and Y be independent (continuous) random variables. Show $E(X Y)=E(X) E(Y)$.
8. Prove $\operatorname{Var}(a+X)=\operatorname{Var}(X)$.
9. Prove $\operatorname{Var}(b X)=b^{2} \operatorname{Var}(X)$.
10. Show $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$.
11. Let $X \sim \operatorname{Uniform}(0,1)$. Calculate $\operatorname{Var}(X)$.
12. Let X have density e^{-x} for $x \geq 0$ and zero otherwise. Calculate $\operatorname{Var}(X)$.
13. Let $X \sim N(\mu, \sigma)$. Calculate $\operatorname{Var}(X)$.
14. The discrete random variables x and y have joint distribution

	$x=1$	$x=2$	$x=3$
$y=1$	$3 / 12$	$1 / 12$	$3 / 12$
$y=2$	$1 / 12$	$3 / 12$	$1 / 12$

(a) What is $E(X \mid Y=1)$?
(b) What is $E\left(Y^{2} \mid X=2\right)$?

$$
\begin{array}{c|ccc}
& x=1 & x=2 & x=3 \\
\hline y=1 & 3 / 12 & 1 / 12 & 3 / 12 \\
y=2 & 1 / 12 & 3 / 12 & 1 / 12
\end{array}
$$

15. Let $f_{x, y}(x, y)=3$ for $0<x<1$ and $0<y<x^{2}$, and zero otherwise.
(a) Using $f_{x}(x)=3 x^{2}$ for $0<x<1$, what is $f_{y \mid x}(y \mid x)$? Don't forget the support.
(b) Find $E(Y \mid X=x)$, where x is a fixed constant between zero and one.
(c) Find $E(Y)$ by double expectation.
(d) Using $f_{y}(y)=3\left(1-y^{1 / 2}\right)$ for $0<x<1$, calculate $E(Y)$ directly.
16. Show that $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$
17. Show that if X and Y are independent, $\operatorname{Cov}(X, Y)=0$.
18. The discrete random variables x and y have joint distribution

$$
\begin{array}{c|ccc}
& x=1 & x=2 & x=3 \\
\hline y=1 & 3 / 12 & 1 / 12 & 3 / 12 \\
y=2 & 1 / 12 & 3 / 12 & 1 / 12
\end{array}
$$

(a) Find $\operatorname{Cov}(X, Y)$.
(b) Are X and Y independent?
19. Show $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$
20. Prove that $\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.

This handout was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:

```
http://www.utstat.toronto.edu/~
```

