Sample Questions: Counting Methods for Computing Probabilities

STA256 Fall 2018. Copyright information is at the end of the last page.

1. Using the formula for $\binom{n}{r}$ from the formula sheet, and the Multiplication Principle, prove that the number of ways that n objects can be divided into r subsets with n_{i} objects in set i is $\left(\begin{array}{cc}n \\ n_{1} & \cdots \\ n_{r}\end{array}\right)=\frac{n!}{n_{1}!\cdots n_{r}!}$.
2. Sample r balls from a jar containing n numbered balls. How many outcomes are there is the sampling is
(a) With replacement?
(b) Without replacement?
3. Using the formula for ${ }_{n} P_{r}$ from the formula sheet, and the Multiplication Principle, prove $\binom{n}{r}=\frac{n!}{r!(n-r)!}$.
4. A jar contains 10 red balls and 20 blue balls. If 5 balls are randomly sampled without replacement, what is the probability of
(a) All blue?
(b) Two red and three blue?
(c) At least one red?
(d) A jar contains 10 red balls and 20 blue balls. If 5 balls are randomly sampled without replacement, what is the probability of obtaining k red balls, $k=0, \ldots, 5$?
5. A shipment of n electronic components has k defectives. If we sample m components without replacement, what is the probability of observing at least one defective?
6. In how many ways can 20 basketball players be divided into 4 teams of 5 ?
7. In how many ways can 6 red flags, 2 blue flags and 4 yellow flags be arranged? The flags are indistinguishable.
8. A standard deck of 52 cards has four "suits:" spades, diamonds, hearts and clubs. Within each suit, the face values of the 13 cards are $2,3,4,5,6,7,8,9,10$, Jack, Queen, King, Ace. A "hand" of poker is 5 cards, selected randomly without replacement.
(a) A "flush" is a hand with 5 cards all of the same suit. What is the probability of a flush?
(b) A "straight" is a hand in which the 5 cards are in sequence. Suit is ignored. An Ace can be either high or low. What is the probability of a straight?

This assignment was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/256f18

