Counting Methods for Computing Probabilities ${ }^{1}$ STA 256: Fall 2018

[^0]
Countable set

A set is said to be countable if it can be placed in one-to-one correspondence with the set of natural numbers $\mathbb{N}=\{1,2, \ldots\}$.

If the sample space Ω is countable and $A \subseteq \Omega$,

$$
P(A)=\sum_{\omega \in A} P(\omega\}
$$

Example: Roll a fair die. What is the probability of an odd number?

$$
P(\mathrm{Odd})=P\{1,3,5\}=P\{1\}+P\{3\}+P\{5\}
$$

If all outcomes of an experiment are equally likely,

$$
P(A)=\frac{\text { Number of ways for } A \text { to happen }}{\text { Total number of outcomes }}
$$

Need to count.

Multiplication Principle
 Also called the Fundamental Principle of Counting

If there are p experiments and the first has n_{1} outcomes, the second has n_{2} outcomes, etc., then there are

$$
n_{1} \times n_{2} \times \cdots \times n_{p}
$$

outcomes in all.

Sample Question

If there are nine horses in a race, in how many ways can they finish first, second and third?

$$
9 \times 8 \times 7=504
$$

Permutations

Ordered subsets

The number of permutations (ordered subsets) of n objects taken r at a time is

$$
\begin{aligned}
{ }_{n} P_{r} & =n \times(n-1) \times \cdots \times(n-r+1) \\
& =\frac{n!}{(n-r)!}
\end{aligned}
$$

Combinations

The number of combinations (unordered subsets) of n objects taken r at a time is

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Proof of $\binom{n}{r}=\frac{n!}{r!(n-r)!}$

Part of Proposition B in the text, p. 12

Choose an unordered subset of r items from n. Then place them in order. By the Multiplication Principle,

$$
\begin{aligned}
& { }_{n} P_{r}=\binom{n}{r} \times r! \\
\Rightarrow & \frac{n!}{(n-r)!}=\binom{n}{r} \times r! \\
\Rightarrow & \binom{n}{r}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Binomial Theorem

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Multinomial Coefficients

Proposition C in the text

The number of ways that n objects can be divided into r subsets with n_{i} objects in set $i, i=1, \ldots, r$ is

$$
\left.\left(\begin{array}{c}
n \\
n_{1} \\
\cdots
\end{array}\right)=\frac{n!}{n_{r}}\right)=\frac{\cdots n_{r}!}{n_{1}!}
$$

Multinomial Theorem

Nice to know

$$
\left(x_{1}+\cdots x_{r}\right)^{n}=\sum_{\mathbf{n}}\left(\begin{array}{ccc}
n \\
n_{1} & \cdots & n_{r}
\end{array}\right) x_{1}^{n_{1}} \cdots x_{r}^{n_{r}}
$$

where the sum is over all non-negative integers n_{1}, \ldots, n_{r} such that $\sum_{j=1}^{r} n_{j}=n$.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/~ ${ }^{\text {brunner/oldclass/256f18 }}$

[^0]: ${ }^{1}$ This slide show is an open-source document. See last slide for copyright information.

