Sample Questions: Continuous Random Variables

STA256 Fall 2018. Copyright information is at the end of the last page.

1. The continuous random variable X has density $f(x)= \begin{cases}\frac{c}{x^{\alpha+1}} & \text { for } x \geq 1 \\ 0 & \text { for } x<1\end{cases}$ where $\alpha>0$.
(a) Find the constant c
(b) Find the cumulative distribution function $F(x)$.
(c) The median of this distribution is that point m for which $P(X \leq m)=\frac{1}{2}$. What is the median? The answer is a function of α.
2. Let $F(x)= \begin{cases}0 & \text { for } x<0 \\ x^{\theta} & \text { for } 0 \leq x \leq 1 \\ 1 & \text { for } x>1\end{cases}$
(a) If $\theta=3$, what is $P\left(\frac{1}{2}<X \leq 4\right)$? The answer is a number.
(b) Find $f(x)$.
3. If a random variable has density $f(x)=\frac{1}{2} e^{-|x|}$, find the cumulative distribution function.
4. The Uniform (a, b) distribution has density $f(x)= \begin{cases}\frac{1}{b-a} & \text { for } a \leq x \leq b \\ 0 & \text { Otherwise }\end{cases}$ Give the cumulative distribution function.
5. The Exponential (λ) distribution has density $f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}$
(a) Show $\int_{-\infty}^{\infty} f(x) d x=1$
(b) Find $F(x)$
(c) Still for the exponential density with $F(x)=1-e^{-\lambda x}$ for $x \geq 0$, prove the "memoryless" property:

$$
P(X>t+s \mid X>s)=P(X>t)
$$

for $t>0$ and $s>0$. For example, the probability that the conversation lasts at least t more minutes is the same as the probability of it lasting at least t minutes in the first place.
6. The Gamma (α, λ) distribution has density $f(x)= \begin{cases}\frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha-1} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}$ Show $\int_{-\infty}^{\infty} f(x) d x=1$.
7. The $\operatorname{Normal}(\mu, \sigma)$ distribution has density $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$ Let $X \sim \mathrm{~N}(\mu, \sigma)$ and $Z=\frac{X-\mu}{\sigma}$. Find the density of Z.
8. Let $Z \sim N(0,1)$ (standard normal), so that $f_{x}(z)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}$. If $x>0$, show $F_{z}(-x)=1-F_{z}(x)$.
9. Let $X \sim N(\mu=50, \sigma=10)$.
(a) Find $P(X<60)$. The answer is a number.
(b) Find $P(X>30)$. The answer is a number.
(c) Find $P(30<X<55)$.
10. The beta density with parameters α and β is $f(x)= \begin{cases}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} & \text { for } 0 \leq x \leq 1 \\ 0 & \text { Otherwise }\end{cases}$ Let $X \sim \operatorname{Beta}(\alpha, \beta)$ with $\beta=1$.
(a) Write the density of X for $0 \leq x \leq 1$. Simplify. You will prove $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$ in homework.
(b) Let $Y=1 / X$. For what values of y is $f_{y}(y)>0$? Show some work.
(c) Derive $f_{y}(y)$. Don't forget to specify where the density is greater than zero.
11. Let $Z \sim N(0,1)$ and $Y=Z^{2}$.
(a) For what values of y is $f_{y}(y)>0$?
(b) Show that Y has a gamma distribution and give the parameters. You may use the fact that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$, without proof.
12. In this problem, the random variable X is transformed by its own distribution function. Let the continuous random vabriale X have distribution function $F_{x}(x)$, and let $Y=$ $F_{x}(X)$.
(a) For what values of y is $f_{y}(y)>0$? Hint: as x ranges from $-\infty$ to $\infty, F_{x}(x)$ ranges from \qquad to \qquad _.
(b) Find $f_{y}(y)$.

This assignment was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:

