% 302f17Assignment1.tex REVIEW \documentclass[12pt]{article} %\usepackage{amsbsy} % for \boldsymbol and \pmb %\usepackage{graphicx} % To include pdf files! \usepackage{amsmath} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=blue, citecolor=blue, urlcolor=blue]{hyperref} % For links \usepackage{fullpage} \pagestyle{empty} % No page numbers \begin{document} %\enlargethispage*{1000 pt} \begin{center} {\Large \textbf{STA 256f18 Assignment One: Calculus Review}}%\footnote{Copyright information is at the end of the last page.} \vspace{1 mm} \end{center} \noindent These homework problems are not to be handed in. They are preparation for Term Test 1 (and the rest of the course). \vspace{5mm} \begin{enumerate} \item $ \displaystyle \int_{1}^{3} \frac{1}{t^3} dt $ \hspace{10mm} [answ: 4/9] \item $ \displaystyle \int_{0}^{\infty} e^{-\theta x} dx $, where $\theta > 0$. \hspace{10mm} [answ: 1/$\theta$] \item $ \displaystyle \int_{0}^{\infty} x e^{-x} dx $ \hspace{10mm} [answ: 1] \item $ \displaystyle \frac{d}{dx} (xe^x) $ \hspace{10mm} [answ: $(1+x)e^x$] \item $ \displaystyle \frac{d}{dt} \ln(1+e^x) $\hspace{10mm} [answ: $ \frac{e^x}{1+e^x}$ ] \item Find the maximum or minimum of $ \displaystyle f(x) = e^{-\frac{1}{2}(x-\mu)^2} $ \hspace{10mm} [answ: max at $x=\mu$] \item $ \displaystyle \sum_{k=0}^{\infty} \frac{1}{2^k} $ \hspace{10mm} [answ: 2] \item For $-10$, find $ \displaystyle \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} $ \hspace{10mm} [answ: 1] \item Show $\displaystyle \lim_{n \rightarrow \infty}\left(1 + \frac{x}{n}\right)^n = e^x$. Hint: Use natural logs and L'H\^{o}pital's rule. \end{enumerate} \vspace{20mm} \noindent \begin{center}\begin{tabular}{l} \hspace{6in} \\ \hline \end{tabular}\end{center} This assignment was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \begin{center} \href{http://www.utstat.toronto.edu/~brunner/oldclass/256f18} {\small\texttt{http://www.utstat.toronto.edu/$^\sim$brunner/oldclass/256f18}} \end{center} \end{document} \item Let $f(x,y) = $ \( \left\{ \begin{array}{ll} % ll means left left x y^2 & \mbox{for } x < y \\ 0 & \mbox{elsewhere} \end{array} \right. \). Find $ \displaystyle \int_{0}^{1} \int_{0}^{1} f(x,y)\,dy\,dx $. \hspace{10mm} [answ: 1/10, \textbf{not} 1/6]