STA 2201S 2001 Assignment 4

Quiz on Thursday Febuary 8th. Bring printouts to the quiz.

1. As we saw in class, a natural way to construct a Monte Carlo estimate of a probability p is to simulate a collection of i.i.d. random variables Y_{1}, \ldots, Y_{m} with $\operatorname{Pr}\left\{Y_{i}=1\right\}=p$ and $\operatorname{Pr}\left\{Y_{i}=0\right\}=1-p$ for $i=1, \ldots, m$. The Monte Carlo approxiation of p is then \bar{Y}_{m}. Any time we do this, we should accompany our estimate with a confidence interval, to indicate the proabble accuracy of our approximation. Our 99% confidence interval will be \bar{Y}_{m} plus or minus a " 99% margin of error." Using this vocabulary,
(a) Find the Monte Carlo sample size for this i.i.d. Bernoulli case so that the 99% margin of error is guaranteed to be less than 0.001. I get a number in excess of 1.6 million. Ouch.
(b) What Monte Carlo sample size is required if the 99% margin of error is to be at most 0.01 ?
(c) Suppose we are interested in estimating a power that is to be 0.80 or more. Now what Monte Carlo sample size is required if the 99% margin of error is to be at most 0.01 ?

Bring your printout.
2. Sometimes, Monte Carlo estimates of p are based on simulating i.i.d. Y_{1}, \ldots, Y_{m} that are not Bernoulli, but still satisfy $E\left[Y_{i}\right]=p$. As before, we use \bar{Y}_{m} as our Monte Carlo approximation, and it converges by the Strong Law of Large Numbers. The quantities Y_{1}, \ldots, Y_{m} are usually conditional probabilities, so that $0 \leq Y_{i} \leq 1$. Show that the required Monte Carlo sample sizes you calculated in Question One also apply to this case, as follows.

Let Y be a random variable that is arbitrary except that $\operatorname{Pr}\{0 \leq Y \leq 1\}=1$ and $E[Y]=\theta$. Prove $\operatorname{Var}(Y) \leq \theta(1-\theta)$.
3. Let the random variable X have density

$$
f(x)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(x-u)^{2}} \frac{1}{\pi\left(1+u^{2}\right)} d u
$$

Approximate $\operatorname{Pr}\{X<0\}$ by Monte Carlo. Accompany your estimate by a largesample confidence interval of width no more than 0.02 . Bring your printout.

Some comments: This density is a location mixture of normals, in which the mixing distribution is standard Cauchy. It's symmetric about zero, so the answer is exactly one-half. I did the computer part two different ways, the i.i.d. Bernoulli way, and another way that turned out to be more efficient. In each case it took only a few lines of code.

