
Definitions and Basic Results Multivariate Normal Delta Method

Random Vectors1

STA2101 Fall 2019

1See last slide for copyright information.
1 / 40



Definitions and Basic Results Multivariate Normal Delta Method

Overview

1 Definitions and Basic Results

2 Multivariate Normal

3 Delta Method

2 / 40



Definitions and Basic Results Multivariate Normal Delta Method

Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their
joint probability distribution is the distribution of the random
matrix. Random matrices with just one column (say, p× 1)
may be called random vectors.
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Expected Value

The expected value of a matrix is defined as the matrix of
expected values. Denoting the p× c random matrix X by [Xi,j ],

E(X) = [E(Xi,j)].
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Immediately we have natural properties like

E(X + Y) = E([Xi,j ] + [Yi,j ])

= [E(Xi,j + Yi,j)]

= [E(Xi,j) + E(Yi,j)]

= [E(Xi,j)] + [E(Yi,j)]

= E(X) + E(Y).
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Moving a constant through the expected value sign

Let A = [ai,j ] be an r × p matrix of constants, while X is still a
p× c random matrix. Then

E(AX) = E

([
p∑

k=1

ai,kXk,j

])

=

[
E

(
p∑

k=1

ai,kXk,j

)]

=

[
p∑

k=1

ai,kE(Xk,j)

]
= AE(X).

Similar calculations yield E(AXB) = AE(X)B.
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Variance-Covariance Matrices

Let X be a p× 1 random vector with E(X) = µ. The
variance-covariance matrix of X (sometimes just called the
covariance matrix), denoted by cov(X), is defined as

cov(X) = E
{

(X− µ)(X− µ)>
}
.
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cov(X) = E
{

(X− µ)(X− µ)>
}

cov(X) = E


 X1 − µ1

X2 − µ2

X3 − µ3

( X1 − µ1 X2 − µ2 X3 − µ3
)

= E


 (X1 − µ1)2 (X1 − µ1)(X2 − µ2) (X1 − µ1)(X3 − µ3)

(X2 − µ2)(X1 − µ1) (X2 − µ2)2 (X2 − µ2)(X3 − µ3)
(X3 − µ3)(X1 − µ1) (X3 − µ3)(X2 − µ2) (X3 − µ3)2


=

 E{(X1 − µ1)2} E{(X1 − µ1)(X2 − µ2)} E{(X1 − µ1)(X3 − µ3)}
E{(X2 − µ2)(X1 − µ1)} E{(X2 − µ2)2} E{(X2 − µ2)(X3 − µ3)}
E{(X3 − µ3)(X1 − µ1)} E{(X3 − µ3)(X2 − µ2)} E{(X3 − µ3)2}



=

 V ar(X1) Cov(X1, X2) Cov(X1, X3)
Cov(X1, X2) V ar(X2) Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) V ar(X3)

 .

So, the covariance matrix cov(X) is a p× p symmetric matrix with variances on

the main diagonal and covariances on the off-diagonals.
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Matrix of covariances between two random vectors

Let X be a p× 1 random vector with E(X) = µx and let Y be
a q × 1 random vector with E(Y) = µy. The p× q matrix of
covariances between the elements of X and the elements of Y is

cov(X,Y) = E
{

(X− µx)(Y − µy)
>
}
.
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Adding a constant has no effect
On variances and covariances

cov(X + a) = cov(X)

cov(X + a,Y + b) = cov(X,Y)

These results are clear from the definitions:

cov(X) = E
{

(X− µ)(X− µ)>
}

cov(X,Y) = E
{

(X− µx)(Y − µy)
>}

Sometimes it is useful to let a = −µx and b = −µy.
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Analogous to V ar(aX) = a2 V ar(X)

Let X be a p× 1 random vector with E(X) = µ and
cov(X) = Σ, while A = [ai,j ] is an r × p matrix of constants.
Then

cov(AX) = E
{

(AX−Aµ)(AX−Aµ)>
}

= E
{

A(X− µ) (A(X− µ))>
}

= E
{

A(X− µ)(X− µ)>A>
}

= AE{(X− µ)(X− µ)>}A>

= Acov(X)A>

= AΣA>
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The Multivariate Normal Distribution

The p× 1 random vector X is said to have a multivariate
normal distribution, and we write X ∼ Np(µ,Σ), if X has
(joint) density

f(x) =
1

|Σ|
1
2 (2π)

p
2

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where µ is p× 1 and Σ is p× p symmetric and positive definite.
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Σ positive definite
In the multivariate normal definition

Positive definite means that for any non-zero p× 1 vector
a, we have a>Σa > 0.

Since the one-dimensional random variable Y =
∑p

i=1 aiXi

may be written as Y = a>X and
V ar(Y ) = cov(a>X) = a>Σa, it is natural to require that
Σ be positive definite.

All it means is that every non-zero linear combination of X
values has a positive variance.

And Σ positive definite is equivalent to Σ−1 positive
definite.
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Analogies
(Multivariate normal reduces to the univariate normal when p = 1)

Univariate Normal

f(x) = 1
σ
√
2π

exp
{
− 1

2
(x−µ)2
σ2

}
E(X) = µ, V ar(X) = σ2

(X−µ)2
σ2 ∼ χ2(1)

Multivariate Normal

f(x) = 1

|Σ|
1
2 (2π)

p
2

exp
{
− 1

2 (x− µ)>Σ−1(x− µ)
}

E(X) = µ, cov(X) = Σ
(X− µ)>Σ−1(X− µ) ∼ χ2(p)
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More properties of the multivariate normal

If c is a vector of constants, X + c ∼ N(c + µ,Σ)

If A is a matrix of constants, AX ∼ N(Aµ,AΣA>)

Linear combinations of multivariate normals are
multivariate normal.

All the marginals (dimension less than p) of X are
(multivariate) normal, but it is possible in theory to have a
collection of univariate normals whose joint distribution is
not multivariate normal.

For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.
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An easy example
If you do it the easy way

Let X = (X1, X2, X3)> be multivariate normal with

µ =

 1
0
6

 and Σ =

 2 1 0
1 4 0
0 0 2

 .

Let Y1 = X1 +X2 and Y2 = X2 +X3. Find the joint
distribution of Y1 and Y2.
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In matrix terms

Y1 = X1 +X2 and Y2 = X2 +X3 means Y = AX

(
Y1

Y2

)
=

(
1 1 0
0 1 1

) X1

X2

X3



Y = AX ∼ N(Aµ,AΣA>)
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You could do it by hand, but

> mu = cbind(c(1,0,6))

> Sigma = rbind( c(2,1,0),

+ c(1,4,0),

+ c(0,0,2) )

> A = rbind( c(1,1,0),

+ c(0,1,1) ); A

> A %*% mu # E(Y)

[,1]

[1,] 1

[2,] 6

> A %*% Sigma %*% t(A) # cov(Y)

[,1] [,2]

[1,] 8 5

[2,] 5 6

18 / 40



Definitions and Basic Results Multivariate Normal Delta Method

Regression

y = Xβ + ε, with ε ∼ Nn(0, σ2In).

So y ∼ Nn(Xβ, σ2In).

β̂ = (X>X)−1X>y = Ay.

So β̂ is multivariate normal.

Just calculate the mean and covariance matrix.

E(β̂) = E
(

(X>X)−1X>y
)

= (X>X)−1X>E(y)

= (X>X)−1X>Xβ

= β
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Covariance matrix of β̂
Using cov(Aw) = Acov(w)A>

cov(β̂) = cov
(

(X>X)−1X>y
)

= (X>X)−1X>cov(y)
(

(X>X)−1X>
)>

= (X>X)−1X>σ2InX(X>X)−1>

= σ2(X>X)−1X>X(X>X)−1

= σ2(X>X)−1

So β̂ ∼ Np

(
β, σ2(X>X)−1

)
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A couple of things to prove

(X− µ)>Σ−1(X− µ) ∼ χ2(p)

X and S2 independent under normal random sampling.
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Recall the square root matrix

Covariance matrix Σ is real and symmetric matrix, so we have
the spectral decomposition

Σ = PΛP>

= PΛ1/2Λ1/2P>

= PΛ1/2 I Λ1/2P>

= PΛ1/2P> PΛ1/2P>

= Σ1/2 Σ1/2

So Σ1/2 = PΛ1/2P>
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Square root of an inverse
Positive definite ⇒ Positive eigenvalues ⇒ Inverse exists

PΛ−1/2P> · PΛ−1/2P> = PΛ−1P> = Σ−1,

so(
Σ−1

)1/2
= PΛ−1/2P>.

It’s easy to show(
Σ−1

)1/2
is the inverse of Σ1/2

Justifying the notation Σ−1/2
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Now we can show (X− µ)>Σ−1(X− µ) ∼ χ2(p)
Where X ∼ N(µ,Σ)

Y = X− µ ∼ N (0, Σ)

Z = Σ−
1
2 Y ∼ N

(
0,Σ−

1
2 ΣΣ−

1
2

)
= N

(
0,Σ−

1
2 Σ

1
2 Σ

1
2 Σ−

1
2

)
= N (0, I)

So Z is a vector of p independent standard normals, and

Y>Σ−1Y = Z>Z =

p∑
j=1

Z2
i ∼ χ2(p) �
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X and S2 independent

Let X1, . . . , Xn
i.i.d.∼ N(µ, σ2).

X =

 X1
...
Xn

 ∼ N (µ1, σ2I
)

Y =


X1 −X

...

Xn−1 −X

X

 = AX
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Y = AX
In more detail



1− 1
n − 1

n · · · − 1
n − 1

n

− 1
n 1− 1

n · · · − 1
n − 1

n
...

...
...

...
...

− 1
n − 1

n · · · 1− 1
n − 1

n

1
n

1
n · · · 1

n
1
n





X1

X2
...

Xn−1

Xn


=



X1 −X

X2 −X
...

Xn−1 −X

X
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The argument

Y = AX =


X1 −X

...

Xn−1 −X

X

 =


Y2

X


Y is multivariate normal.

Cov
(
X, (Xj −X)

)
= 0 (Exercise)

So X and Y2 are independent.

So X and S2 = g(Y2) are independent. �
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Leads to the t distribution

If

Z ∼ N(0, 1) and

Y ∼ χ2(ν) and

Z and Y are independent, then

T =
Z√
Y/ν

∼ t(ν)
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Random sample from a normal distribution

Let X1, . . . , Xn
i.i.d.∼ N(µ, σ2). Then

√
n(X−µ)
σ = (X−µ)

σ/
√
n
∼ N(0, 1) and

(n−1)S2

σ2 ∼ χ2(n− 1) and

These quantities are independent, so

T =

√
n(X − µ)/σ√

(n−1)S2

σ2 /(n− 1)

=

√
n(X − µ)

S
∼ t(n− 1)
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Multivariate normal likelihood
For reference

L(µ,Σ) =
n∏

i=1

1

|Σ| 12 (2π)
p
2

exp

{
−1

2
(xi − µ)>Σ−1(xi − µ)

}

= |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
,

where Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)> is the sample

variance-covariance matrix.
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The Multivarite Delta Method
An application

The univariate delta method says that if
√
n (Tn − θ)

d→ T , then
√
n (g(Tn)− g(θ))

d→ g′(θ)T .

In the multivariate delta method, Tn and T are d-dimensional
random vectors.

The function g : Rd → Rk is a vector of functions:

g(x1, . . . , xd) =

 g1(x1, . . . , xd)
...

gk(x1, . . . , xd)


g′(θ) is replaced by a matrix of partial derivatives (a Jacobian):

ġ(x1, . . . , xd) =
[
∂gi
∂xj

]
k×d

like

(
∂g1

∂x1

∂g1

∂x2

∂g1

∂x3
∂g2

∂x1

∂g2

∂x2

∂g2

∂x3

)
.
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The Delta Method
Univariate and multivariate

The univariate delta method says that if
√
n (Tn − θ)

d→ T , then
√
n (g(Tn)− g(θ))

d→ g′(θ)T .

The multivariate delta method says that if
√
n(Tn − θ)

d→ T,

then
√
n(g(Tn)− g(θ))

d→ ġ(θ)T,

where ġ(x1, . . . , xd) =
[
∂gi
∂xj

]
k×d

In particular, if T ∼ N(0,Σ), then

√
n(g(Tn)− g(θ))

d→ Y ∼ N(0, ġ(θ)Σġ(θ)>).
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Testing a non-linear hypothesis

Consider the regression model yi = β0 + β1xi,1 + β2xi,2 + εi.

There is a standard F -test for H0 : Lβ = h.

So testing whether β1 = 0 and β2 = 0 is easy.

But what about testing whether β1 = 0 or β2 = 0 (or
both)?

If H0 : β1β2 = 0 is rejected, it means that both regression
coefficients are non-zero.

Can’t test non-linear null hypotheses like this with
standard tools.

But if the sample size is large we can use the delta method.
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The asymptotic distribution of β̂1β̂2

The multivariate delta method says that if
√
n(Tn − θ)

d→ T, then
√
n(g(Tn)− g(θ))

d→ ġ(θ)T,

Know β̂ = (X>X)−1X>y ∼ Np
(
β, σ2(X>X)−1

)
.

So
√
n(β̂n − β)

d→ T ∼ N(0,Σ), where Σ = limn→∞ σ2
(
1
nX>X

)−1
.

Let g(β) = β1β2. Have

=
√
n(g(β̂n)− g(β))

=
√
n(β̂1β̂2 − β1β2)

d→ ġ(β)T

= T ∼ N(0, ġ(β)Σġ(β)>)

We will say β̂1β̂2 is asymptotically N
(
β1β2,

1
n ġ(β)Σġ(β)>

)
.

Need ġ(β).
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ġ(x1, . . . , xd) =
[
∂gi
∂xj

]
k×d

g(β0, β1, β2) = β1β2 so d = 3 and k = 1.

ġ(β0, β1, β2) = (
∂g

∂β0
,
∂g

∂β1
,
∂g

∂β2
)

= (0, β2, β1)

So β̂1β̂2
·∼ N

β1β2,
1
n(0, β2, β1)Σ

 0
β2

β1

.
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Need the standard error

We have β̂1β̂2
·∼ N

β1β2,
1
n(0, β2, β1)Σ

 0
β2

β1

.

Denote the asymptotic variance by

1
n(0, β2, β1)Σ

 0
β2

β1

 = v.

If we knew v we could compute Z = β̂1β̂2−β1β2√
v

And use it in tests and confidence intervals.

Need to estimate v.
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Standard error
Estimated standard deviation of β̂1β̂2

v =
1

n
(0, β2, β1)Σ

 0
β2

β1


where Σ = limn→∞ σ

2
(

1
nX>X

)−1
.

Estimate β1 and β2 with β̂1 and β̂2

Estimate σ2 with MSE = e>e/(n− p).
Approximate 1

nΣ with

MSE
1

n

(
1

n
X>X

)−1

= MSE

(
n

1

n
X>X

)−1

= MSE
(
X>X

)−1
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v̂ approximates v

v =
1

n
(0, β2, β1)Σ

 0

β2

β1



v̂ = MSE (0, β̂2, β̂1)
(
X>X

)−1

 0

β̂2

β̂1
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Test statistic for H0 : β1β2 = 0

Z =
β̂1β̂2 − 0√

v̂
where

v̂ = (0, β̂2, β̂1)MSE
(
X>X

)−1

 0

β̂2

β̂1



Note MSE
(
X>X

)−1
is produced by R’s vcov function.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/2101f19
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