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Background Reading

Appendix A, Section 6
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Vector of MLEs is Asymptotically Normal
That is, Multivariate Normal

This yields

Confidence intervals for the parameters.

Z-tests of H0 : θj = θ0.

Wald tests.

Score Tests.

Indirectly, the Likelihood Ratio tests.

3 / 19



Under Regularity Conditions
(Thank you, Mr. Wald)

θ̂n
a.s.→ θ

√
n(θ̂n − θ)

d→ T ∼ Nk

(
0,I(θ)−1

)
So we say that θ̂n is asymptotically Nk

(
θ, 1nI(θ)−1

)
.

I(θ) is the Fisher Information in one observation.

A k × k matrix

I(θ) =

[
E[− ∂2

∂θi∂θj
log f(Y ;θ)]

]

The Fisher Information in the whole sample is nI(θ)

4 / 19



θ̂n is asymptotically Nk

(
θ, 1

nI(θ)−1
)

Asymptotic covariance matrix of θ̂n is 1
nI(θ)−1, and of

course we don’t know θ.

For tests and confidence intervals, we need a good
approximate asymptotic covariance matrix,

Based on a consistent estimate of the Fisher information
matrix.

I(θ̂n) would do.

But it’s inconvenient: Need to compute partial derivatives
and expected values in

I(θ) =

[
E[− ∂2

∂θi∂θj
log f(Y ;θ)]

]
and then substitute θ̂n for θ.
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Another approximation of the asymptotic covariance
matrix

Approximate

1

n
I(θ)−1 =

[
nE[− ∂2

∂θi∂θj
log f(Y ;θ)]

]−1
with

V̂n =

([
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

)−1

V̂−1n is called the “observed Fisher information.”
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Observed Fisher Information

To find θ̂n, minimize the minus log likelihood.

Matrix of mixed partial derivatives of the minus log
likelihood is[

− ∂2

∂θi∂θj
`(θ,Y)

]
=

[
− ∂2

∂θi∂θj

n∑
i=1

log f(Yi;θ)

]

So by the Strong Law of Large Numbers,

J n(θ) =

[
1

n

n∑
i=1

− ∂2

∂θi∂θj
log f(Yi;θ)

]
a.s.→

[
E

(
− ∂2

∂θi∂θj
log f(Y ;θ)

)]
= I(θ)
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A Consistent Estimator of I(θ)
Just substitute θ̂n for θ

J n(θ̂n) =

[
1

n

n∑
i=1

− ∂2

∂θi∂θj
log f(Yi;θ)

]
θ=θ̂n

a.s.→
[
E

(
− ∂2

∂θi∂θj
log f(Y ;θ)

)]
= I(θ)

Convergence is believable but not trivial.

Now we have a consistent estimator, more convenient than

I(θ̂n): Use Î(θ)n = J n(θ̂n)
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Approximate the Asymptotic Covariance Matrix

Asymptotic covariance matrix of θ̂n is 1
nI(θ)−1.

Approximate it with

V̂n =
1

n
J n(θ̂n)−1

=
1

n

(
1

n

[
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

)−1

=

([
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

)−1
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Compare
Hessian and (Estimated) Asymptotic Covariance Matrix

V̂n =

([
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

)−1
Hessian at MLE is H =

[
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

So to estimate the asymptotic covariance matrix of θ, just
invert the Hessian.

The Hessian is usually available as a by-product of
numerical search for the MLE.
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Connection to Numerical Optimization

Suppose we are minimizing the minus log likelihood by a
direct search.

We have reached a point where the gradient is close to
zero. Is this point a minimum?

The Hessian is a matrix of mixed partial derivatives. If all
its eigenvalues are positive at a point, the function is
concave up there.

Partial derivatives are often approximated by the slopes of
secant lines – no need to calculate them symbolically.

It’s the multivariable second derivative test.
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So to find the estimated asymptotic covariance matrix

Minimize the minus log likelihood numerically.

The Hessian at the place where the search stops is usually
available.

Invert it to get V̂n.

This is so handy that sometimes we do it even when a
closed-form expression for the MLE is available.
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Estimated Asymptotic Covariance Matrix V̂n is Useful

Asymptotic standard error of θ̂j is the square root of the
jth diagonal element.

Denote the asymptotic standard error of θ̂j by S
θ̂j

.

Thus

Zj =
θ̂j − θj
S
θ̂j

is approximately standard normal.
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Confidence Intervals and Z-tests

Have Zj =
θ̂j−θj
S
θ̂j

approximately standard normal, yielding

Confidence intervals: θ̂j ± Sθ̂jzα/2
Test H0 : θj = θ0 using

Z =
θ̂j − θ0
S
θ̂j
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And Wald Tests for H0 : Lθ = h
Based on (X − µ)>Σ−1(X − µ) ∼ χ2(p)

Wn = (Lθ̂n − h)>
(
LV̂nL

>
)−1

(Lθ̂n − h)

θ̂n
·∼ Np(θ,Vn) so if H0 is true, Lθ̂n

·∼ Nr(h,LVnL
>).

Thus (Lθ̂n − h)>
(
LVnL

>)−1 (Lθ̂n − h)
·∼ χ2(r).

And substitute V̂n for Vn.

Slutsky arguments omitted.
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Score Tests
Thank you Mr. Rao

θ̂ is the MLE of θ, dimension k × 1

θ̂0 is the MLE under H0, dimension k × 1

u(θ) = ( ∂`
∂θ1

, . . . ∂`∂θk )> is the gradient.

u(θ̂) = 0.

If H0 is true, u(θ̂0) should also be close to zero too.

Under H0 for large N , u(θ̂0) ∼ Nk(0,
1
nI(θ)),

approximately.

And,

S = u(θ̂0)
> 1

n
I(θ̂0)

−1u(θ̂0)
·∼ χ2(r)

Where r is the number of restrictions imposed by H0.
Or use the inverse of the Hessian (under H0) instead of 1

nI(θ̂0).
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Three Big Tests

Score Tests: Fit just the restricted model

Wald Tests: Fit just the unrestricted model

Likelihood Ratio Tests: Fit Both
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Comparing Likelihood Ratio and Wald tests

Asymptotically equivalent under H0, meaning
(Wn −G2

n)
p→ 0

Under H1,

Both have the same approximate distribution (non-central
chi-square).
Both go to infinity as n→∞.
But values are not necessarily close.

Likelihood ratio test tends to get closer to the right Type I
error probability for small samples.

Wald can be more convenient when testing lots of
hypotheses, because you only need to fit the model once.

Wald can be more convenient if it’s a lot of work to write
the restricted likelihood.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:
http://www.utstat.toronto.edu/∼brunner/oldclass/2101f1
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