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Factor	Analysis:	The	Measurement	
Model	
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Example	with	2	factors	and	8	observed	variables	

Di = �Fi + ei

Di,1 = �11Fi,1 + �12Fi,2 + ei,1

Di,2 = �21Fi,1 + �22Fi,2 + ei,2 etc.

The	lambda	values	are	called	factor	loadings.	
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Terminology	

•  The	lambda	values	are	called	factor	loadings.	
•  F1	and	F2	are	sometimes	called	common	
factors,	because	they	influence	all	the	
observed	variables.	

•  Error	terms	e1,	…,	e8	are	sometimes	called	
unique	factors,	because	each	one	influences	
only	a	single	observed	variable.	

Di,1 = �11Fi,1 + �12Fi,2 + ei,1

Di,2 = �21Fi,1 + �22Fi,2 + ei,2 etc.



Factor	Analysis	can	be	

•  Exploratory:		The	goal	is	to	describe	and	
summarize	the	data	by	explaining	a	large	
number	of	observed	variables	in	terms	of	a	
smaller	number	of	latent	variables	(factors).	
The	factors	are	the	reason	the	observable	
variables	have	the	correlations	they	do.		

•  Confirmatory:		Statistical	estimation	and	
testing	as	usual.	



Part	One:		Unconstrained	(Exploratory)		
Factor	Analysis	



D = �F + e

Main interest is in the number of factors and the factor loadings �.

V (F) = �
V (e) = ⇥ (usually diagonal)

V (D) = ⌃ = ⇤�⇤> +⌦

F and e independent (multivariate normal)



A	Re-parameterization	

⌃ = ⇤�⇤> +⌦

Square root matrix: � = SS = SS>, so

⇤�⇤> = ⇤SS>⇤>

= (⇤S)I(S>⇤>)

= (⇤S)I(⇤S)>

= ⇤2I⇤
>
2



Parameters	are	not	identifiable	

•  Two	distinct	(Lambda,	Phi)	pairs	give	the	same	
Sigma,	and	hence	the	same	distribution	of	the	
data.	

•  Actually,	there	are	infinitely	many.	Let	Q	be	an	
arbitrary	covariance	matrix	for	F.	
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Parameters	are	not	identifiable	

•  This	shows	that	the	parameters	of	the	general	
measurement	model	are	not	identifiable	
without	some	restrictions	on	the	possible	
values	of	the	parameter	matrices.	

•  Notice	that	the	general	unrestricted	model	
could	be	very	close	to	the	truth.		But	the	
parameters	cannot	be	estimated	successfully,	
period.	



Restrict	the	model	

•  Set	Phi	=	the	identity,	so	V(F)	=	I	
•  All	the	factors	are	standardized,	as	well	as	
independent.	

•  Justify	this	on	the	grounds	of	simplicity.	
•  Say	the	factors	are	“orthogonal”	(at	right	
angles,	uncorrelated).	

⇤�⇤> = ⇤2I⇤
>
2



Standardize	the	observed	variables	too	

•  For	j	=	1,	…,	k	and	independently	for	i=1,	…,n	

•  		

•  Assume	each	observed	variable	has	variance	one	
as	well	as	mean	zero.	

•  Sigma	is	now	a	correlation	matrix.	
•  Base	inference	on	the	sample	correlation	matrix.	

Zij =
Dij �Dj

sj



Revised	Exploratory	Factor	Analysis	Model	

V (F) = I
V (e) = � (usually diagonal)

Z = �F + e

⌃ is a correlation matrix.

V (D) = ⌃ = ⇤⇤> +⌦

F and e independent (multivariate normal)



Meaning	of	the	factor	loadings	

•  λij	is	the	correlation	between	variable	i	and	
factor	j.		

•  Square	of	λij	is	the	reliability	of	variable	i	as	a	
measure	of	factor	j.	

Corr(D6, F2) = Cov(D6, F2) = E(D6F2)

= E ((�61F1 + �62F2)F2)

= �61E(F1F2) + �62E(F 2
2 )

= �61E(F1)E(F2) + �62V ar(F2)

= �62



Communality	

•  										is	the	proportion	of	variance	in	variable	i	
														that	comes	from	the	common	factors.	
•  It	is	called	the	communality	of	variable	i.	
•  The	communality	cannot	exceed	one.	
•  																													Peculiar?	
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If	we	could	estimate	the	factor	loadings	

•  We	could	estimate	the	correlation	of	each	
observable	variable	with	each	factor.	

•  We	could	easily	estimate	reliabilities.	
•  We	could	estimate	how	much	of	the	variance	
in	each	observable	variable	comes	from	each	
factor.	

•  This	could	reveal	what	the	underlying	factors	
are,	and	what	they	mean.	

•  Number	of	common	factors	can	be	very	
important	too.	



Examples	
•  A	major	study	of	how	people	describe	objects	
(using	7-point	scales	from	Ugly	to	Beautiful,	
Strong	to	Weak,	Fast	to	Slow	etc.	revealed	3	
factors	of	connotative	meaning:	
–  Evaluation		
–  Potency	
– Activity	

•  Factor	analysis	of	a	large	collection	of	personality	
scales	revealed	2	major	factors:	
– Neuroticism	
–  Extraversion	

•  Yet	another	series	of	studies	suggested	16	
personality	factors,	the	basis	of	the	widely	used	
16	pf	test.	



Rotation	Matrices	

• Have a co-ordinate system in terms of
�
i ,
�
j orthonormal vectors

• Roatate the axies through an angle �.

�
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j� j

i� = i cos � + j sin �

j� = �i sin � + j cos �



i� = (cos �)i + (sin �)j
j� = (� sin �)i + (cos �)j
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The	transpose	rotated	the	axies	back	through	an	angle	of	minus	theta.	



In	General	

•  A	pxp	matrix	R	satisfying	R-inverse	=	R-
transpose	is	called	an	orthogonal	matrix.	

•  Geometrically,	pre-multiplication	by	an	
orthogonal	matrix	corresponds	to	a	rotation	in	
p-dimensional	space.	

•  If	you	think	of	a	set	of	factors	F	as	a	set	of	
axies	(underlying	dimensions),	then		RF	is	a	
rotation	of	the	factors.		

•  Call	it	an	orthogonal	rotation,	because	the	
factors	remain	uncorrelated	(at	right	angles).				



Another	Source	of	non-identifiability	

Infinitely	many	rotation	matrices	produce	the	same	Sigma.	

⌃ = ⇤⇤> +⌦

= ⇤RR>⇤> +⌦

= (⇤R)(R>⇤>) +⌦

= (⇤R)(⇤R)> +⌦

= ⇤2⇤
>
2 +⌦



New	Model	

Z = �2F + e
= (�R)F + e
= �(RF) + e
= �F� + e

F� is a set of rotated factors.



A	Solution	
•  Place	some	restrictions	on	the	factor	loadings,	so	that	
the	only	rotation	matrix	that	preserves	the	restrictions	
is	the	identity	matrix.	For	example,	λij	=	0	for	j>i	

•  There	are	other	sets	of	restrictions	that	work.	
•  Generally,	they	result	in	a	set	of	factor	loadings	that	
are	impossible	to	interpret.	Don’t	worry	about	it.	

•  Estimate	the	loadings	by	maximum	likelihood.	Other	
methods	are	possible	but	used	much	less	than	in	the	
past.	

•  All	(orthoganal)	rotations	result	in	the	same	value	of	
the	likelihood	function	(the	maximum	is	not	unique).	

•  Rotate	the	factors	(that	is,	post-multiply	the	loadings	
by	a	rotation	matrix)	so	as	to	achieve	a	simple	pattern	
that	is	easy	to	interpret.	



Rotate	the	factor	solution	
•  Rotate	the	factors	to	achieve	a	simple	pattern	that	is	
easy	to	interpret.	

•  There	are	various	criteria.		They	are	all	iterative,	taking	
a	number	of	steps	to	approach	some	criterion.	

•  The	most	popular	rotation	method	is	varimax	rotation.	
•  Varimax	rotation	tries	to	maximize	the	(squared)	
loading	of	each	observable	variable	with	just	one	
underlying	factor.	

•  So	typically	each	variable	has	a	big	loading	on	
(correlation	with)	one	of	the	factors,	and	small	
loadings	on	the	rest.	

•  Look	at	the	loadings	and	decide	what	the	factors	mean	
(name	the	factors).	



A	Warning	

•  When	a	non-statistician	claims	to	have	done	a	“factor	
analysis,”	ask	what	kind.	

•  Usually	it	was	a	principal	components	analysis.	
•  Principal	components	are	linear	combinations	of	the	
observed	variables.	They	come	from	the	observed	
variables	by	direct	calculation.	

•  In	true	factor	analysis,	it’s	the	observed	variables	that	
arise	from	the	factors.	

•  So	principal	components	analysis	is	kind	of	like	
backwards	factor	analysis,	though	the	spirit	is	similar.	

•  Most	factor	analysis	(SAS,	SPSS,	etc.)	does	principal	
components	analysis	by	default.	
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