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Proportional Hazards Regression Model

Based on the hazard function

h(t) = h0(t) e
β0+x>β

Swallow eβ0 into the baseline hazard function and get

h(t) = h0(t) e
x>β

The regression model has no intercept.

It’s common practice to center the explanatory variables (but not
the dummy variables) by subtracting off the overall sample mean
of the variable.

Then, the baseline hazard function is the hazard function of an
individual in the reference category, who is “average” on all the
quantitive explanatory variables.

It’s quite meaningful.
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Hazard Ratio

h1(t)

h2(t)
=

h0(t) e
x>1 β

h0(t) ex
>
2 β

=
ex
>
1 β

ex
>
2 β

Proportional hazards.

If xk is increased by one unit, the hazard function is multiplied by
eβk .

This is true for every time t (according to the model).

So you can just say the “hazard” or “risk” or even “chances” of
the event are twice as much.

It’s a good way to talk and think about the results.
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Need to estimate the hazard and survival functions

What we have so far is good for significance testing.

Need to estimate the hazard and survival functions.
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Estimating the baseline hazard
h0(t) in h(t) = h0(t) e

x>β

Remember how partial likelihood started.

h0(t)e
x>
(i)

β ≈ h0(t)e
x>
(i)

β∑
j∈R(i)

h0(t)e
x>j β

=
e
x>
(i)

β∑
j∈R(i)

ex
>
j β

=
1∑

j∈R(i)

ex
>
j β
× e

x>
(i)

β
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A leap of intuition

Humm,

h0(t(i))× e
x>
(i)

β ≈ 1∑
j∈R(i)

ex
>
j β
× e

x>
(i)

β

So how about

ĥ0(t(i)) =
1∑

j∈R(i)

ex
>
j β̂

Well, there could be ties in practice, so based on the Kaplan-Meier

estimated hazard q̂(i) =
d(i)
n(i)

,

ĥ0(t(i)) =
d(i)∑

j∈R(i)

ex
>
j β̂

Almost always, d(i) = 1 anyway.
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Estimated Hazard Function(s)
Based on h(t) = h0(t) e

x>β

ĥ(t(i)) = ĥ0(t(i)) e
x>β̂

Nice for display. Can plot D points.

Notice it depends on x.
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Estimating the Survival Function: Background
Using H(t) =

∫ t

0
h(y) dy and S(t) = e−H(t)

H0(t) =
∫ t
0 h0(y) dy is the baseline cumulative hazard function.

S0(t) = e−H0(t) = e−
∫ t
0 h0(y) dy is the baseline survival function.

With a little work we can show S(t) = S0(t)
exp{x>i β}.

This could be written S(t|xi).
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Estimating the Survival Curve (Cox and Oakes, 1982)
Using S0(t) = e−H0(t) and S(t) = S0(t)

exp{x>β}

Want an estimate of H0(t) =
∫ t
0 h0(y) dy, but

ĥ0(t(i)) =
d(i)∑

j∈R(i)

ex
>
j β̂

is only defined for t(1), . . . , t(D), the times where uncensored
observations occurred.
Approximate the integral with a finite sum:

Ĥ0(t) =
∑
t(i)≤t

d(i)∑
j∈R(i)

ex
>
j β̂
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Cox and Oakes argument continued
Using S0(t) = e−H0(t) and S(t|x) = S0(t)

exp{x>β}

Have

Ĥ0(t) =
∑
t(i)≤t

d(i)∑
j∈R(i)

ex
>
j β̂

Then

Ŝ0(t) = e−Ĥ0(t)

Ŝ(t|x) = Ŝ0(t)
exp{x>β̂}
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It works

As usual, later work clarified matters and eliminated most of the
guesswork.

Cox’s estimate of S(t) is shown to arise from Breslow’s method of
approximating the partial likelihood when there are ties.

There are several other estimates, all yielding results that are
pretty close.

To me, the biggest payoff is that Ŝ(t|x) allows estimation of the
median for any particular set of explanatory variable values.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/312f23
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