S-Plus Instructions

Parametric regression with survreg()

Suppose that you have the following regression model for some continuous, positive random variable \(T \) and a vector of explanatory variables (covariates) \(x \):

\[
\ln T = \beta_0 + \beta' x + \sigma W,
\]

where \(W \) is a continuous random variable on the real line with a distribution that does not involve any unknown parameters. Choices of distributions of \(T \) that can be fitted with survreg() are extreme value, logistic, gaussian (normal) and Rayleigh, corresponding to, respectively, Weibull, log-logistic, log-normal and log-Rayleigh distribution for \(T \). S-Plus calls \(\alpha_0 \) (Intercept), \(\sigma \) (Dispersion(scale)) and the beta’s in front of a regressor by the name given to the regressor.

General syntax of survreg()

USAGE:

```
 survreg(formula = formula(data), subset, link = c("log"),
         dist = c("extreme", "logistic", "gaussian", "exponential",
                   "rayleigh"), fixed = list())
```

ARGUMENTS:

- `formula`: a formula expression as for other regression models. The response is usually a survival object as returned by the Surv function. See the documentation for Surv, lm and formula for details.
- `subset`: expression saying that only a subset of the rows of the data should be used in the fit.
- `link`: transformation to be used on the y variable.
- `dist`: assumed distribution for the transformed y variable.
- `fixed`: a list of fixed parameters, most often just the scale.

(See more optional arguments for survreg() ... see S-Plus help files.)

Example

Let us now fit a log-logistic regression model to the data of Assignment 1, Question 11, assuming no left truncation.

```
> alq11 <- read.table("alq11.dat",header=T)
> alq11.t <- alq11[,1]
> alq11.d <- alq11[,2]
> alq11.x <- as.numeric(alq11[,3]=="D")
> alq11.sr <- survreg(Surv(alq11.t,alq11.d)~alq11.x,dist="logistic")
> alq11.srD <- survreg(Surv(alq11.t[alq11.x==1],alq11.d[alq11.x==1]),
                     + dist="logistic")
> alq11.tD <- alq11.t[alq11.x==1]
> alq11.dD <- alq11.d[alq11.x==1]
> alq11.srD <- survreg(Surv(alq11.t[alq11.x==1],alq11.d[alq11.x==1])~1,
                        + dist="logistic")
> alq11.srP <- survreg(Surv(alq11.t[alq11.x==0],alq11.d[alq11.x==0])~1,
                        + dist="logistic")
```
Let us now look at excerpts of the output of \texttt{survreg()}

\begin{verbatim}
> summary(a1q11.sr)

Coefficients:
 Value Std. Error z value p
(Intercept) 3.312 0.124 26.743 0.000
alq11.x 0.148 0.163 0.908 0.364

Logistic distribution: Dispersion (scale) est = 0.2126292
Degrees of Freedom: 31 Total; 28 Residual
-2*Log-Likelihood: 21.4

> summary(a1q11.srD)

Coefficients:
 Value Std. Error z value p
(Intercept) 3.460 0.113 30.5 0

Logistic distribution: Dispersion (scale) est = 0.2247572
Degrees of Freedom: 17 Total; 15 Residual
-2*Log-Likelihood: 12.8

> summary(a1q11.srP)

Coefficients:
 Value Std. Error z value p
(Intercept) 3.300 0.121 27.3 0

Logistic distribution: Dispersion (scale) est = 0.1956445
Degrees of Freedom: 14 Total; 12 Residual
-2*Log-Likelihood: 8.41
\end{verbatim}

If we wish to test whether it is reasonable to assume that the scale parameter does not depend on the value of the covariate, we simply fit a model with two different scale parameters (2nd and 3rd \texttt{survreg()}) and one model with a common scale parameter (the 1st \texttt{survreg()}) and we test if the model reduction is appropriate using a likelihood ratio test. Here, the likelihood ratio statistic is 21.4-(12.8+8.41) = 0.19, for a p-value of 0.66.