Lecture 2

Probability and Counting Rules
Sample-Point Method:

1. Define the experiment and describe a sample space, S.
2. List all the simple events.
3. Assign probabilities to the sample points in S
P(E)20 omd = P(E=]
4. Define the eventA as a collection of sample points.
5. Calculate P(A) by summing the probabilities of sample points
In A.

Example: Toss a coin 3 times. Find P(of exactly 2 heads).
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How to count sample points?

Theorem (mn-rule): With m elements a4, a,, ..., a,,, and n elements
b1, by, ..., by, 1t Is possible to form mn = m X n pairs containing
one element from each group.
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Example: Toss a coin 3 times.
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Birthday Example: We record the birthdays for each of 20
randomly selected persons. Assuming there are 365 possible
distinct birthdays, find the number of points in the sample space S
for this experiment. What is P(each person has a different
birthday)?
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Definition: An ordered arrangement of distinct objects is called a
permutation.

Denote P = number of ways of ordering n distinct objects taken r
at a time.
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Theorem: P =n(n—1)(n—2)-... - (n—r+1) =
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Definition: The number of combinations of n objects taken r at a

time 1s the number of subsets, each of size r, that can be formed
from n objects.

Denote C' = (Z) = number of combinations.
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Example: Two cards are drawn from a 52-card deck. What is P(ace
and face card)?

52\ _
Solution: COJVO{(S>: 2) — ,7)9\ é:
:{"U“MLM Lace woAB

Cowd A‘ Q‘L} gy

- 0.01(0C 2
() = ‘wj

Example (#2.64). Toss a die 6 times. Find the probability of
observing 1, 2, 3, 4, 5, and 6 in any order.= A

Solution: (‘\11[ mq)((z qb}f‘)



Conditional Probability and Independence of Events

Definition: The conditional probability of an event A, given that
an event B has occurred is given by

P(A|B) =

P(ANB)
@) P(B)>0

Example: We toss a die once. Find a probability of a 1, given that
an odd number was obtained.
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Definition: Two events A and B are said to be independent if any
one of the following holds:

P(A\B)= P (A)
P(BIp)=T(B)
P (A OP) = PA)P(BR)

F) = P\ B)= Pors) = (AMB)- P(RIP(E)

Example: Toss a die. Let A={observe an odd number},
B={observe an even number} C={observe 1 or 2}.
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Note: ‘Mutually exclusive’ # ‘independent’.



Two Laws of Probability

Theorem (The Multiplicative Law):
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Theorem (The Additive Law):
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The Event Composition Method:

1. Define the experiment.

2. Describe the sample space.

3. Write the equation that expresses the event A as a composition
of two or more events.

4. Apply the additive and multiplicative laws of probability.

Example: A patient with a disease will respond to treatment with
probability of 0.9. If three patients are treated and respond
independently, find P(at least one will respond).
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The Law of Total Probability and Bayes’ Rule

Definition: For some k € Z*, let the sets B, B, ..., By be such that
§=ByUB,U..UBy, BinB; =0, i+ j. Then the collection
of sets {B4, B,, ..., By} is said to be a partition of S.
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Theorem: Assume that {B,, B,, ..., By } is a partition of S such that
P(B;) >0, i =1,...,k. Then for any event A,

P(A) = X, P(AIB)P(B)).

Proof:
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Theorem (Bayes’ Rule): Assume {B4, B>, ..., By } Is a partition of S
suchthat P(B;) >0, i =1, ...,k. Then
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Example: (#2.136) A personnel director has two lists of applicants
for jobs. List 1 contains the names of 5 women and 2 men, list 2
contains the names of 2 women and 6 men. A name is randomly
selected from list 1 and added to list 2. A name is then randomly
selected from the augmented list 2. Given that the name selected is
that of a man, what is the probability that a woman’s name was
originally selected from li
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Random Variables / /;1_ ? T 3

Definition: A random variable (r.v.) is a real-valued function for
which the domain is a sample space.

Example: We toss 2 coins. Let Y equal the number of heads.
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Lety denote anﬂobse{rved \ialue of Y. Then P(Y=y) is the sum of the
probabilities of the sample points that are a55|gned the value y.

P (Y=0)= P(Ey) = |
P(\=1) = P(F »J+W<E)~—-z
P(y=2)= P(E)= /y




