Repeated measurement analysis of binary responses¹
Because language is discrete

¹This slide show is an open-source document. See last slide for copyright information.

Modern tools

In R, the glmer function in the lme4 package

- An extension of logistic regression (glm in R).
- y = 0 or 1.
- Random shock for subject again.
- So it's a mixed model.
- Technically a non-linear mixed model.

Odds

An indirect representation of probability

$$Odds = \frac{p}{1 - p}$$

- If P(Y = 1) = 1/2, Odds = .5/(1-.5) = 1 (to 1)
- If P(Y = 1) = 2/3, Odds = 2 (to 1)
- If P(Y = 1) = 3/5, Odds = (3/5)/(2/5) = 1.5 (to 1)
- If P(Y = 1) = 1/5, Odds = .25 (to 1)

The higher the probability, the greater the odds

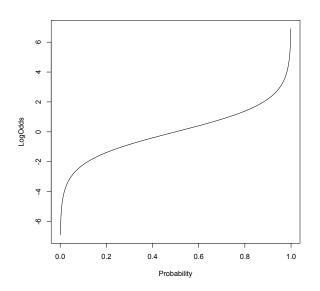
$$Odds = \frac{p}{1-p}$$

$$0 \le Odds < \infty$$

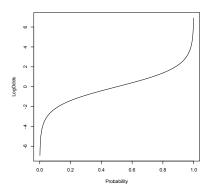
A linear model for the log odds

- Under the surface, a multiple regression equation
- Not for the probability of Yes
- And not for the odds of Yes
- But for the natural logarithm (base e, not 10) of the odds.
- $-\infty < \ln(\text{Odds}) < \infty$

The greater the probability, the greater the log odds



Log odds range from $-\infty$ to ∞



- Probabilities of zero and one are ruled out.
- Estimated probabilities of zero and one are ruled out too.

The odds ratio

- Conclusions tend to emerge in terms of odds.
- Instead of a treatment adding or subtracting something from the control group mean
- It might multiply the odds by something.
- If the something is greater than one, it's an increase in probability.
- Like the odds of a recursive structure are 1.4 times as great in the experimental condition.
- If the something is less than one, it's a decrease in probability.
- This is called the *odds ratio*.

Main effects: What are we testing?

 Tests for main effects are tests for differences of marginal mean log odds.

	Treatment			
	A	B	C	
Adult	1.0	1.7	0.9	1.2
Child	1.5	1.8	2.4	1.9
	1.25	1.75	1.65	1.55

- These correspond to ratios of marginal geometric mean odds.
 - Geometric mean = $(7 \cdot 2 \cdot 5 \cdot 6)^{1/4} = 4.53 \text{ (Not 5)}$
 - Geometric mean \leq Arithmetic mean.
- Simple statements about geometric means of odds translate into complicated statements about probabilities.
- Still, they often capture the reality that something is more likely under certain conditions.

Interactions

It depends

Is there an interaction?

	Group		
Treatment	1	2	3
Experimental	0.5	0.7	0.9
Control	0.2	0.4	0.6

Interaction means different odds ratios

Not different differences between probabilities

		Group			
		1	2	3	
Exper	Probability	0.50	0.70	0.90	
	Odds	1.00	2.33	9.00	
Control	Probability	0.20	0.40	0.60	
	Odds	0.25	0.67	1.50	
	Odds Ratio	4.00	3.50	6.00	

Repeated measures

- Suppose subjects appear in more than one treatment condition.
- There is a baseline log odds of Yes for each treatment combination.
- A random shock for each subject is added to the baseline log odds.
- According to the usual model, the random shock is normally distributed.
- When a subject appears in more than one condition, her log odds of Yes are pushed up or down by the same amount.
- This produces correlated binary responses from the same subject.

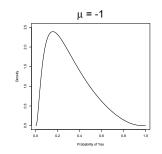
A two-stage probability process

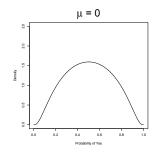
Implied by the random shocks model

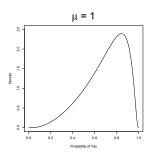
- Subjects in a treatment combination are a random sample from some hypothetical population.
- The random sampling of subjects is Stage One.
- Within each treatment combination, log odds of Yes are normally distributed.
 - Population mean is determined by the treatment combination.
 - Population variance is the same for all treatment combinations.
- Log odds values from the same subject are correlated.
- For each observation, log odds of Yes are converted to a probability.
- Then a Yes or No is randomly produced.
- The "coin toss" to produce Yes or No is Stage Two.
- All we can observe are the Yes and No values.

Theoretical distribution of the probability of Yes

Based on a normal distribution of the log odds with standard deviation = 1







Main points

- Model implies a different log odds of Yes for each subject (in each condition).
- Log odds are normally distributed.
- Population mean log odds depends on the treatment combination.
- Tests of main effects and interactions have the usual meaning in terms of population mean log odds.
- You should continue to think in terms of probabilities (proportion of Yes responses in each condition).
- You can still believe pairwise differences between means, because mean log odds are different if and only if mean probability is different.
- You might want to look at estimated mean log odds to see what the tests of main effects and interactions are reflecting.

State of the art

Contemporary, not just modern

- The theory behind the tests is straightforward.
- But it's asymptotic.
- Meaning it's justified as the number of data points $\to \infty$.
- Computation is a bit bleeding edge.
- Methods for finding parameter estimates are iterative.
- Convergence problems are common.
- Software from different vendors does not always produce the same numbers.
- It's easy to produce examples with simulated data that fail the test of large-sample accuracy (yes, in R).
- Let's do it anyway.

The glmer function in the lme4 package

- Syntax is like lmer for linear models.
- And like glm for generalized linear models with fixed effects.
- We are going to keep it simple.
- Just add +(1|Subject) for the random shock (intercept).
- And maybe sometimes +(1|Item).
- Use effect coding (contr.sum) if there are interactions between factors.
- Anova(model, type='III') from the car package to test each effect controlling for all others.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from

 $\verb|http://www.utstat.toronto.edu/^brunner/workshops/mixed|$