UNIVERSITY OF TORONTO Faculty of Arts and Science

December 2011 Final Examination STA442H1F/2101HF

Methods of Applied Statistics

Jerry Brunner

Duration - 3 hours

Aids: Calculator Model(s): Any calculator is okay

Last/Surname (Print):	
First/Given Name (Print):	
Student Number:	
Signature:	

Qn. #	Value	Score		
1	20			
2	20			
3	10			
4	15			
5	5			
6	12			
7	8			
8	10			
Total = 100 Points				

1. Independently for i = 1, ..., n, let

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where $E(X_i) = \mu$, $Var(X_i) = \sigma_x^2$, $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma_\epsilon^2$, and ϵ_i is independent of X_i . Let

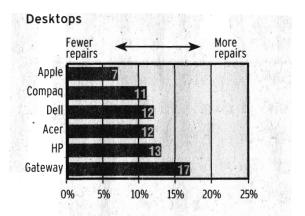
$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n X_i^2}.$$

(a) Is $\widehat{\beta}_1$ a consistent estimator of β_1 ? Answer Yes or No and Circle Yes or No. Prove your answer.

(b) For some special cases we have $\widehat{\beta}_1 \stackrel{a.s.}{\to} \beta_1$. When does this happen?

- 2. Let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is an $n \times p$ matrix of known constants, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown constants, and $\boldsymbol{\epsilon}$ is multivariate normal with mean zero and covariance matrix $\sigma^2 \mathbf{I}_n$, where $\sigma^2 > 0$ is an unknown constant. You may use without proof the fact that if $\mathbf{T} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{A}\mathbf{T} \sim N(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$.
 - (a) In the regression model, what is the distribution of Y? No proof is needed.
 - (b) The maximum likelihood estimate of β is $\widehat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ (no proof needed). What is the distribution of $\widehat{\beta}$? Show the calculations.

- 3. In a study of math education in elementary school, equal numbers of boys and girls were randomly assigned to one of three training programmes designed to improve spatial reasoning. After five school days of training, the students were given a standardized test of spatial reasoning. Score on the spatial reasoning test is the response variable. You will define a regression model for this factorial analysis of variance. Don't write the model yet.
 - (a) In the table below, show how your dummy variables are defined. *Use effect coding.* Write the name of each dummy variable at the head of its column.


Girls, Programme 1	
Girls, Programme 2	
Girls, Programme 3	
Boys, Programme 1	
Boys, Programme 2	
Boys, Programme 3	

(b) Give $E[Y_i|\mathbf{X}_i = \mathbf{x}_i]$ for the full model. Include the interaction terms.

(c) Suppose you want to test whether, averaging across training programmes, there is a difference between girls and boys in their average performance on the spatial reasoning test. State the null hypothesis in terms of the β values in your model.

(d) Suppose you want to test whether the average sex difference in performance depends on which training programme the children are in. State the null hypothesis in terms of the β values in your model.

4. The following was scanned from the 2012 Consumer Reports Buying Guide. It shows repair history for several desktop computer brands, and seems to be based on a fairly sophisticated statistical analysis.

Gateway has been among the more repairprone brands of desktop computers and Apple
has been among the least. That's what we
found when we asked almost 20,000 readers who bought a desktop computer between
2008 and 2011 about their experiences. The
graph shows the percentage of models for
each brand that were repaired or had a serious problem. Differences of fewer than 5
points aren't meaningful, and we've adjusted
the data to eliminate differences linked solely
to the age of the desktop computer. Models
within a brand can vary, and design or manufacture changes might affect future reliability.

- (a) What statistical method do you guess they employed?
- (b) What words above suggest that they did some kind of hypothesis tests?
- (c) What was the covariate?
- (d) How would you set up dummy variables for the Brand of Computer? Make a table in the space beside the scanned material.
- (e) Assuming there is no interaction, write an expression (a function of the $\widehat{\beta}$ values) that would give you the number 17 for Gateway computers. Denote the covariate by x.

 $5\ points$

- 5. On the Computer Printout, the output for the Beta data is based on a random sample of size n = 50 from a beta distribution.
 - (a) What is the maximum likelihood estimate $\widehat{\alpha}$? The answer is a number from the printout.

(b) Carry out a test of $H_0: \alpha = 5$ versus $H_1: \alpha \neq 5$. Calculate the test statistic. The answer is a number. Show a little work. Circle the number. Do you reject H_0 at $\alpha = 0.05$? Answer Yes or No. You have more room than you need.

- 6. On the Computer Printout, the output for the Cars data is based on the same metric cars data you analyzed for homework. Potentially there are three regression lines relating weight of car to fuel efficiency.
 - (a) We wish to know whether country differences in fuel efficiency depend on the weight of the car. Fill in the table below.

F Statistic	Degrees of Freedom (2 numbers)	<i>p</i> -value	Reject H_0 at $\alpha = 0.05$? (Yes or No)

- (b) Do country differences in fuel efficiency depend on the weight of the car? Answer Yes or No.
- (c) Are the three regression lines parallel in the population? Answer Yes or No.
- (d) What is the estimated expected fuel efficiency for a U.S. car of average weight (meaning average for the entire sample)? The answer is a single number.
- (e) What is the estimated slope of the regression line for U.S. cars? The answer is a single number.
- (f) To show which slopes are different from one another, make a table whose i, j element is the Bonferroni-adjusted p-value for the tests of difference between the slope for country i and country j. Just fill in the upper triangular part of the table. Use your calculator to convert p-values on the printout to Bonferroni-adjusted p-values.

(g) Based on the multiple comparisons, which slopes are really different? Don't just say they're different; say which one is steeper (going down faster).

- 7. On the Computer Printout, the output for the Birth Weight Data is based on the same data discussed in lecture.
 - (a) The estimated odds of a low birth weight baby are _____ times as great for a mother with a history of premature labour. The answer is a single number; write it on the line.
 - (b) You want to know whether *any* of the variables in the model are related to the chances that a baby will have low birth weight. Fill in the table below.

	Wald			Reject H_0 at $\alpha = 0.05$?
	χ^2 Statistic	Degrees of Freedom	<i>p</i> -value	(Yes or No)
ĺ				

- (c) Does the preceding test indicate that at least one of the explanatory variables is related to the response variable? Answer Yes or No.
- (d) Give an approximate 95% confidence interval for the regression coefficient corresponding to mother's weight. Your answer is a pair of numbers, and there is more than one way to calculate them from the numbers on the printout. You have more room than you need.

- 8. On the Computer Printout, the output for the Dichotic Listening Study comes from data given in the Final Assignment. Focus on this question. Does mode of presentation (Left *versus* Right *versus* Both) influence performance?
 - (a) There is a single test for the question of interest. Record the numbers below.

F Statistic	Degrees of Freedom (2 numbers)	<i>p</i> -value	Reject H_0 at $\alpha = 0.05$? (Yes or No)

- (b) Only one of the pairwise comparisons of marginal means is statistically significant using a multiple comparison method. Give the Bonferroni-adjusted p-value. The answer is a single number.
- (c) Describe the difference in simple, non-statistical language. Be sure you say which mean is bigger.

STA442/2101 Final Exam Printout

Table of Contents Page

Critical Values	1
Beta Data	1
Cars Data	2
Birth Weight Data	5
Dichotic Listening Data	7

> qnorm(0.975)

Critical Values

```
[1] 1.959964
> DF = 1:5
> CritVal = qchisq(0.95,DF); cbind(DF,CritVal)
         CritVal
[1,] 1 3.841459
[2,] 2 5 001467
       2 5.991465
[2,]
       3 7.814728
[3,]
[4,]
     4 9.487729
[5,] 5 11.070498
                                          Beta Data
> x <- scan("http://www.utstat.toronto.edu/~brunner/appliedf11/data/beta.data")
Read 50 items
> BLL <- function(ab,datta) # - Loglike of beta
       n <- length(datta)</pre>
       BLL <- n*lgamma(ab[1]) + n*lgamma(ab[2]) - n*lgamma(sum(ab)) -
       (ab[1]-1)*sum(log(datta)) - (ab[2]-1)*sum(log(1-datta))
if(ab[1] <= 0) BLL <- Inf; if(ab[2] <= 0) BLL <- Inf
+  }
> fit1 <- nlminb(c(1,1),objective=BLL,datta=x); fit1</pre>
$par
[1] 13.96757 27.27781
$objective
[1] -60.26451
$convergence
[1] 0
$message
[1] "relative convergence (4)"
$iterations
[1] 20
$evaluations
function gradient
       21
```

```
> fit2 <- nlm(BLL,fit1$par,hessian=T,datta=x); fit2</pre>
$minimum
[1] -60.26451
$estimate
[1] 13.96757 27.27781
$gradient
[1] -1.008464e-07 -4.071882e-08
$hessian
           [,1]
                       [,2]
[1,] 2.483506 -1.2270086
[2,] -1.227009 0.6398216
$code
[1] 3
$iterations
[1] 1
> huh = solve(fit2$hessian); huh
[,1] [,2]
[1,] 7.667046 14.70337
[2,] 14.703367 29.76010
```

Cars Data

```
/*************** FinalCars.sas *******************/
options linesize=79 pagesize=100 noovp formdlim='-' nodate;
title 'Metric Cars Data: STA442/2101 Fall 2011 Final Exam';
data auto;
     infile 'mcars2.data' firstobs=2;
                                                /* Skipping the header on line 1 */
     input id country $ kpl weight length;
     if country = 'US' then c1=1;
        else if country = 'Japan' then c1=0;
else if country = 'Europ' then c1=0;
     if country = 'Europ' then c2=1;
  else if country = 'US' then c2=0;
         else if country = 'Japan' then c2=0;
     cweight = weight - 1413.45; /* Subtract off mean weight */
     cwc1 = cweight*c1;
     cwc2 = cweight*c2;
     label country = 'Country of Origin'
            kpl = 'Kilometers per Litre'
            weight = 'Weight in kg'
cweight = 'Centered Weight'
            length = 'Length in cm';
```

Metric Cars Data: STA442/2101 f2011 Final Exam

The REG Procedure Model: MODEL1

Dependent Variable: kpl Kilometers per Litre

Number of Observations Read 100 Number of Observations Used 100

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To	otal	5 94 99	489.27223 216.61706 705.88930	97.85445 2.30444	42.46	<.0001
	Root MSE Dependent I Coeff Var	Mean	1.51804 8.79480 17.26062	R-Square Adj R-Sq	0.6931 0.6768	

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value
Intercept cweight c1	Intercept Centered Weight	1 1 1	3.36821 -0.01827 5.45383	1.53516 0.00418 1.54696	2.19 -4.37 3.53
c2 cwc1		1 1	3.73906 0.01304	1.69123 0.00422	2.21 3.09
cwc2		1	0.00611	0.00453	1.35

Parameter Estimates

Variable Label	DF	Pr > t
Intercept Intercept	1	0.0307
cweight Centered Weight	1	<.0001
c1	1	0.0007
c2	1	0.0295
cwc1	1	0.0026
cwc2	1	0.1810

1

Metric Cars D	ata: STA4	42/2101 f20	11 Final Exa	am	2
		Procedure : MODEL1			
Test C1_eq_C2	Results f	or Dependen	t Variable }	kpl	
Source	DF	Mean Square	F Value	Pr > F	
Numerator Denominator	1 94	12.55043 2.30444	5.45	0.0217	
 Metric Cars D	oata: STA4	42/2101 f20	11 Final Exa		3
		Procedure : MODEL1			
Test C1_eq_C2_eq	_0 Result	s for Depend	dent Variabl	le kpl	
Source	DF	Mean Square	F Value	Pr > F	
Numerator Denominator	2 94	20.01055 2.30444	8.68	0.0003	
 Metric Cars D	oata: STA4	42/2101 f20	11 Final Exa	am	4
		Procedure MODEL1			
Test CWC1_eq_CWC	2 Results	for Depende	ent Variable	e kpl	
Source	DF	Mean Square	F Value	Pr > F	
Numerator Denominator	1 94	33.02284 2.30444	14.33	0.0003	
 Metric Cars D	oata: STA4	42/2101 f20	11 Final Exa	am	5
		Procedure : MODEL1			
Test CWC1_eq_CWC2_	eq_0 Resu	lts for Depe	endent Varia	able kpl	
Source	DF	Mean Square	F Value	Pr > F	

Numerator 2 Denominator 94

Final Exam Printout: Page 4 of 8

26.53036 11.51 <.0001 2.30444

Birth Weight Data

title2 'STA442/2101f11 Final Exam'; %include 'bweightread.sas';

label lwt = 'Weight at Last Period'
ptl = 'History of Premature Labour (1=Yes, 0=No)'
ht = 'History of Hypertension (1=Yes, 0=No)';

proc logistic;

model low (event='Under 2500 g') = lwt ptl ht / covb;

Low Birth Weight Data

1

The LOGISTIC Procedure

Model Information

Data Set WORK.BIGBABY Low Birth Weight Response Variable low Number of Response Levels Model binary logit Optimization Technique Fisher's scoring

> Number of Observations Read 189 Number of Observations Used 189

Response Profile

Ordered Value	low	Total Frequency
1 2	2500 g + Under 2500 g	130 59

Probability modeled is low='Under 2500 g'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion	Intercept Only	Intercept and Covariates
AIC	236.672	218.123
SC	239.914	231.090
-2 Log L	234.672	210.123

Final Exam Printout: Page 5 of 8

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	24.5486	3	<.0001
Score	24.2151	3	<.0001
Wald	20.1449	3	0.0002

Analysis of Maximum Likelihood Estimates

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.0171	0.8533	1.4209	0.2333
lwt	1	-0.0173	0.00679	6.4812	0.0109
ptl	1	1.4067	0.4285	10.7778	0.0010
ĥt	1	1.8939	0.7211	6.8984	0.0086

Odds Ratio Estimates

	Point	95% Wald		
Effect	Estimate	Confidence Limits		
lwt	0.983	0.970	0.996	
ptl	4.083	1.763	9.455	
ĥt	6.645	1.617	27.308	

Association of Predicted Probabilities and Observed Responses

Percent Concordant	71.1	Somers'	D	0.438
Percent Discordant	27.3	Gamma		0.445
Percent Tied	1.6	Tau-a		0.189
Pairs	7670	C		0.719

Estimated Covariance Matrix

Parameter	Intercept	lwt	ptl	ht
Intercept	0.728149	-0.00564	-0.04289	0.17753
lwt	-0.00564	0.000046	0.000051	-0.00173
ptl	-0.04289	0.000051	0.183611	0.018931
ht	0.17753	-0.00173	0.018931	0.519955

Dichotic Listening Data

```
> ear =
read.table("http://www.utstat.toronto.edu/~brunner/appliedf11/data/Dichotic.data")
> attach(ear)
> # Hotelling's T-squared for H0: L mu = h
> HTest = function(datta,L,h=0)
+
      HTest = numeric(5)
      names(HTest) = c("T-squared", "F", "df1", "df2", "p-value")
+
      xbar = apply(datta,2,mean)
      n = \dim(\operatorname{datta})[1]; k = \dim(\operatorname{datta})[2]; r = \dim(L)[1]
      if(dim(L)[2] != k) stop("L and data matrix incompatible sizes")
+
      T2 = n * t(L^**xbar-h) *** solve(L^**var(datta)***t(L)) *** (L^**xbar-h)
+
      T2 = as.numeric(T2); F = (n-r)/(r*(n-1)) * T2
      pval = 1-pf(F,r,n-r)
+
      HTest = c(T2,F,r,n-r,pval)
      names(HTest) = c("T-squared", "F", "df1", "df2", "p-value")
      round(HTest, 5)
      } # End function HTest
> ear[1:5,]
  test11 test12 test13 test21 test22 test23 test31 test32 test33
                     10
                                                   14
                                                           13
1
      13
             12
                             15
                                    14
                                            14
2
       4
              8
                      8
                             6
                                     5
                                            8
                                                    6
                                                            3
                                                                    4
3
      13
              15
                                    13
                                            15
                                                   11
                                                                  12
                     11
                             11
                                                           13
4
       7
              5
                      4
                              6
                                     7
                                             3
                                                    6
                                                            7
                                                                    6
5
      11
              12
                     14
                              9
                                    11
                                             8
                                                   12
                                                           10
                                                                  11
> # First some descriptive statistics
> Xbar = apply(ear,2,mean); Xbar
           test12
                     test13
                               test21
                                        test22
                                                  test23
                                                            test31
                                                                      test32
                                                                               test33
9.444444 9.592593 9.197531 9.111111 9.654321 8.950617 8.851852 9.308642 8.567901
> mean(test12)
[1] 9.592593
> cellmeans = Xbar; dim(cellmeans) <- c(3,3); cellmeans</pre>
          [,1]
                   [,2]
[1,] 9.444444 9.111111 8.851852
[2,] 9.592593 9.654321 9.308642
[3,] 9.197531 8.950617 8.567901
> cellmeans = t(cellmeans)
> rownames(cellmeans) <- c("Left", "Right", "Both")</pre>
> colnames(cellmeans) <- c("HipHop", "Classc", "Radio")</pre>
```

```
> Xbar
  test11
           test12
                   test13
                              test21
                                       test22
                                                 test23
                                                          test31
                                                                   test32
9.444444 9.592593 9.197531 9.111111 9.654321 8.950617 8.851852 9.308642 8.567901
> cellmeans
        НірНор
                 Classc
                            Radio
      9.444444 9.592593 9.197531
Left
Right 9.111111 9.654321 8.950617
Both 8.851852 9.308642 8.567901
> # Marginal Means
> apply(cellmeans,1,mean)
    Left
            Right
9.411523 9.238683 8.909465
> apply(cellmeans,2,mean)
  HipHop Classc
                    Radio
9.135802 9.518519 8.905350
> # Tests
>
> C1 = rbind(c(1,1,1,-1,-1,-1,0,0,0),
             c(0,0,0,1,1,1,-1,-1,-1)
> HTest(ear,C1)
T-squared
                  F
                           df1
                                     df2
                                           p-value
            4.23430
                       2.00000
                               79.00000
                                           0.01791
  8.57581
 C2 = rbind(c(1,-1,0,1,-1,0,1,-1,0),
             C(0,1,-1,0,1,-1,0,1,-1)
> HTest(ear,C2)
                                           p-value
T-squared
                  F
                           df1
                                     df2
            8.90287
                       2.00000
                                79.00000
                                           0.00033
 18.03113
>
> C3 = rbind(c(1,-1,0,-1,1,0,0,0,0),
+
             c(0,1,-1,0,-1,1,0,0,0)
+
             c(0,0,0,1,-1,0,-1,1,0),
             c(0,0,0,0,1,-1,0,-1,1))
> HTest(ear,C3)
T-squared
                           df1
                                     df2
                                           p-value
  1.59136
            0.38292
                       4.00000
                               77.00000
                                           0.82021
> C4 = rbind(c(1,1,1,-1,-1,-1,0,0,0))
> HTest(ear,C4)
T-squared
                  F
                           df1
                                     df2
                                           p-value
  1.19640
            1.19640
                      1.00000
                               80.00000
                                           0.27733
> C5 = rbind(c(1,1,1,0,0,0,-1,-1,-1))
> HTest(ear,C5)
T-squared
                           df1
                                     df2
                                           p-value
  8.55538
            8.55538
                       1.00000 80.00000
                                           0.00448
> C6 = rbind(c(0,0,0,1,1,1,-1,-1,-1))
> HTest(ear,C6)
T-squared
                  F
                           df1
                                     df2
                                           p-value
                       1.00000
  3.41493
            3.41493
                               80.00000
                                           0.06831
> C7 = rbind(c(1,-1,0,1,-1,0,1,-1,0))
> HTest(ear,C7)
T-squared
                           df1
                                     df2
                                           p-value
            6.73559
                       1.00000 80.00000
                                           0.01124
  6.73559
> C8 = rbind(c(1,0,-1,1,0,-1,1,0,-1))
> HTest(ear,C8)
T-squared
                  F
                           df1
                                     df2
                                           p-value
  1.66406
            1.66406
                       1.00000
                               80.00000
                                            0.20077
> C9 = rbind(c(0,1,-1,0,1,-1,0,1,-1))
> HTest(ear,C9)
T-squared
                           df1
                                     df2
                                           p-value
```

15.85559

15.85559

1.00000

80.00000

0.00015