Low Birth Weight Study

bweight.data

Col 1 = Identification Code
Col 2 = Low Birth Weight Baby (1=Yes under 2500g, 0=No)
Col 3 = Mother's age in years
Col 4 = Weight at Last Period
Col 5 = Race (1=White, 2=Black, 3=Other)
Col 6 = Smoke during Pregnancy (1=Yes, 0=No)
Col 7 = History of Premature Labour (# of times)
Col 8 = History of Hypertension (1=Yes, 0=No)
Col 9 = Presence of Uterine Irritability (1=Yes, 0=No)
Col 10 = Visits to Doctor During 1st trimester
Col 11 = Baby's birth Weight in Grams

> bweight = read.table("http://www.utstat.toronto.edu/~brunner/appliedf11/data/bweight.data")
> bweight[1:5,]
 low age lwt race smoke ptl ht ui ftv bwt
 85 0 19 182 2 0 0 0 1 0 2523
 86 0 33 155 3 0 0 0 0 3 2551
 87 0 20 105 1 1 0 0 0 1 2557
 88 0 21 108 1 0 0 0 1 2 2594
 89 0 18 107 1 1 0 0 1 0 2600

> attach(bweight)
> # Crude descriptive stats
> table(low)
low
 0 1
 130 59
> summary(age)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 14.00 19.00 23.00 23.24 26.00 45.00
> summary(lwt)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 80.0 110.0 121.0 129.8 140.0 250.0
> table(race) # 1=White, 2=Black, 3=Other
race
 1 2 3
 96 26 67
> table(smoke)
smoke
 0 1
 115 74
> table(ptl)
ptl
 0 1 2 3
 119 24 5 1
> ptl[ptl>1]=1 # Collapsing categories
> table(ptl)
ptl
 0 1
 159 30

> table(ht)
ht
 0 1
177 12
> table(ui)
ui
 0 1
161 28
> table(ftv)
ftv
 0 1 2 3 4 6
100 47 30 7 4 1
> # Don't collapse ftv for now

> # First, some simple examples to illustrate the methods
> # Two continuous explanatory variables
> modell <- glm(low ~ age + lwt, family=binomial)
> summary(modell)

Call:
glm(formula = low ~ age + lwt, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.1352 -0.9088 -0.7480 1.3392 2.0595

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.748773 0.997097 1.754 0.0795 .
age -0.039788 0.032287 -1.232 0.2178
lwt -0.012775 0.006211 -2.057 0.0397 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 227.12 on 186 degrees of freedom
AIC: 233.12

Number of Fisher Scoring iterations: 4

\[
\text{Deviance} = \sum_{i=1}^{n} (-2 \log P\{Y_i = y_i | x_i, \hat{\beta}\}) = \sum_{i=1}^{n} d_i
\]

Deviance Residual:
\[
r_i^D = \text{sign} \left(y_i - P\{Y_i = y_i | x_i, \hat{\beta}\} \right) \sqrt{d_i}
\]

Null deviance is the deviance of a model with just the intercept.
> summary(model1)

Call:
glm(formula = low ~ age + lwt, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.1352 -0.9088 -0.7480 1.3392 2.0595

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.748773 0.997097 1.754 0.0795 .
age -0.039788 0.032287 -1.232 0.2178
lwt -0.012775 0.006211 -2.057 0.0397 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 227.12 on 186 degrees of freedom
AIC: 233.12

Number of Fisher Scoring iterations: 4

> model1$coefficients

(Intercept) age lwt
 1.74877349 -0.03978793 -0.01277541

> VHat1 = vcov(model1) # Estimated asymptotic variance-covariance matrix of beta-hats

> VHat1

 (Intercept) age lwt
(Intercept) 0.994201503 -0.019951111 -0.004138813
age -0.019951111 1.042471e-03 -2.961832e-05
lwt -0.004138813 -2.961832e-05 3.857930e-05

> # Reproduce Z-test of age controlling for weight
> Z = model1$coefficients[2]/sqrt(VHat1[2,2]); Z

 age
-1.232309

> model1$deviance

[1] 227.1234

> model1$null.deviance

[1] 234.672

> # G-squared = Deviance(Reduced)-Deviance(Full)
> # df = difference in number of betas
> G2 = model1$null.deviance-model1$deviance; G2

[1] 7.548608

> pval = 1-pchisq(G2,df=2); pval

[1] 0.02295306

> # Wald test of same H0: beta1=beta2=0
> WaldTest = function(L,thetahat,Vhat,h=0) # H0: L theta = h
+ {
+ WaldTest = numeric(3)
+ names(WaldTest) = c("W","df","p-value")
+ dfree = dim(L)[1]
+ W = t(L%*%thetahat-h) %*% solve(L%*%Vhat%*%t(L)) %*% (L%*%thetahat-h)
+ W = as.numeric(W)
+ pval = 1-pchisq(W,dfree)
+ WaldTest
+ } # End function WaldTest
> CC = rbind(c(0,1,0),
+ c(0,0,1))
> WaldTest(L=CC,thetahat=model1$coefficients,Vhat=VHat1)
> W df p-value
> 6.64269960 2.00000000 0.03610407
> G2; pval
> [1] 7.548608
> [1] 0.02295306

> anova(model1)
Analysis of Deviance Table

Model: binomial, link: logit
Response: low

Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev
NULL 188 234.672
age 1 2.760 187 231.912
lwt 1 4.789 186 227.123

> 1-pchisq(4.789,1) # LR test of weight controlling for age
[1] 0.02864205
> anova(glm(low~age, family=binomial)) # Compare LR test for age
Analysis of Deviance Table

Model: binomial, link: logit
Response: low

Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev
NULL 188 234.676
age 1 2.760 187 231.912
lwt 1 4.789 186 227.123

> # anova of a glm object enters variables in order, allowing test
> # of each one controlling for all the previous ones.
> # anova of lm object is different.
>
> # Estimate probability of low birth weight for a 19 year old
> # mother weighing 120 pounds
> x = c(1,19,120); xb = sum(x*model1$coefficients)
> phat = exp(xb)/(1+exp(xb)); phat
[1] 0.3681301
> agewt = data.frame(age=19,lwt=120)
> pred = predict(model1,newdata=agewt); pred
[1] -0.5402469
> # It's log odds
> xb
[1] -0.5402469
> exp(pred)/(1+exp(pred)) # Estimated probability of Y=1: Okay!
[1] 0.3681301
> # Using predict may be better for large models
For constant age, increase of weight by one pound multiplies
estimated odds of low birth weight baby by ...
> \exp(\text{model1$coefficients[3]})

lwt
0.9873058

> # Represent race with 2 indicator dummy variables. First the hard way:
> n = length(race); n

[1] 189
> r1=numeric(n); r2 = numeric(n)
> r1[race==2]=1; r2[race==3]=1
> table(r1,race)

 race
r1 1 2 3
 0 96 0 67
 1 0 26 0
> table(r2,race)

 race
r2 1 2 3
 0 96 26 0
 1 0 0 67
>

> model2a = glm(low ~ r1 + r2, family=binomial); summary(model2a)

Call:
glm(formula = low ~ r1 + r2, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.0489 -0.9665 -0.7401 1.4041 1.6905

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.1550 0.2391 -4.830 1.36e-06 ***
r1 0.8448 0.4634 1.823 0.0683 .
r2 0.6362 0.3478 1.829 0.0674 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 229.66 on 186 degrees of freedom
AIC: 235.66

Number of Fisher Scoring iterations: 4

> G2a = model2a$null.deviance-model2a$deviance; G2a
[1] 5.010366
> 1-pchisq(G2a,2)
[1] 0.08166065
> racelow = table(race,low); racelow

 low
 race 0 1
 1 73 23
 2 15 11
 3 42 25
> loglin(racelow,margin=list(1,2))$lrt

2 iterations: deviation 0
[1] 5.010366
> racefac <- factor(bweight$race,label=c("White","Black","Other"))
> contrasts(racefac)
 Black Other
White 0 0
Black 1 0
Other 0 1
> # Indicator dummy variable coding, reference category first (123)
> model2b = glm(low ~ racefac, family=binomial)
> # summary(model2b) is 100% identical to summary(model2a)

> # Estimated odds of low birth weight baby are ___ times as
> # great for Blacks as Whites:
> exp(model2b$coefficients[2])
 racefacBlack
 2.327536

> # Control for a continuous variable
> model3 = glm(low ~ lwt + racefac, family=binomial); summary(model3)

Call:
 glm(formula = low ~ lwt + racefac, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.3491 -0.8919 -0.7196 1.2526 2.0993

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.805753 0.845167 0.953 0.3404
lwt -0.015223 0.006439 -2.364 0.0181 *
racefacBlack 1.081066 0.488052 2.215 0.0268 *
racefacOther 0.480603 0.356674 1.347 0.1778

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 234.67 on 188 degrees of freedom
 Residual deviance: 223.26 on 185 degrees of freedom
 AIC: 231.26

Number of Fisher Scoring iterations: 4
> G2change = model2b$deviance-model3$deviance; G2change
[1] 6.40254
> # What is H0?
> 1-pchisq(G2change,1)
[1] 0.01139572

> # Another way, using anova to compare 2 models
> anova(model2b,model3)
Analysis of Deviance Table

Model 1: low ~ racefac
Model 2: low ~ lwt + racefac

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>186</td>
<td>2</td>
<td>229.662</td>
</tr>
<tr>
<td>2</td>
<td>185</td>
<td></td>
<td>223.259</td>
</tr>
<tr>
<td>1</td>
<td>186</td>
<td>1</td>
<td>6.403</td>
</tr>
</tbody>
</table>

> # What about race controlling for weight?
> # Could fit a reduced model with just weight, but ...
> anova(model3)
Analysis of Deviance Table

Model: binomial, link: logit

Response: low

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>188</td>
<td>234.672</td>
<td></td>
</tr>
<tr>
<td>lwt</td>
<td>1</td>
<td>5.981</td>
<td>187</td>
</tr>
<tr>
<td>racefac</td>
<td>2</td>
<td>5.432</td>
<td>185</td>
</tr>
</tbody>
</table>

> 1-pchisq(5.432,2)
[1] 0.06613878
> # Try a Wald test
> VHat3 = vcov(model3)
> Rwt = rbind(c(0,0,1,0), + c(0,0,0,1))
> WaldTest(L=Rwt,thetahat=model3$coefficients,Vhat=VHat3)
W df p-value
5.40239035 2.00000000 0.06712524

> # Still not statistically significant. It’s time to get serious
> # about model building.
> bweight[1:5,]
 low age lwt race smoke ptl ht ui ftv bwt
85 0 19 182 2 0 0 1 0 2523
86 0 33 155 3 0 0 0 1 22551
87 0 20 105 1 1 0 0 0 1 2557
88 0 21 108 1 1 0 0 1 2 2594
89 0 18 107 1 1 0 0 1 0 2600

> fullmod = glm(low ~ age+lwt+racefac+smoke+ptl+ht+ui+ftv,family=binomial)
> summary(fullmod)

Call:
glm(formula = low ~ age + lwt + racefac + smoke + ptl + ht +
 ui + ftv, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.6305 -0.7894 -0.5094 0.9119 2.2257

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.644476 1.223889 0.527 0.59849
age -0.039548 0.038305 -1.032 0.30186
lwt -0.015078 0.007034 -2.143 0.03207 *
racefacBlack 1.218791 0.533168 2.286 0.02226 *
racefacOther 0.819439 0.450466 1.819 0.06890 .
smoke 0.859459 0.409836 2.097 0.03599 *
ptl 1.218512 0.463015 2.632 0.00850 **
ht 1.860429 0.708161 2.627 0.00861 **
ui 0.719299 0.463419 1.552 0.12062
ftv 0.050900 0.175456 0.290 0.77174

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 196.75 on 179 degrees of freedom
AIC: 216.75

Number of Fisher Scoring iterations: 4

> # Try dropping age, ui, ftv: Test simultaneously
> # What is H0?
> redmod1 = glm(low ~ lwt+racefac+smoke+ptl+ht,family=binomial)
> G2change1 = redmod1$deviance-fullmod$deviance; G2change1
[1] 3.732170
> 1-pchisq(G2change1,3)
[1] 0.2918750
> # No problem discarding these.
> # Controlling for the other vars, they do nothing.
> summary(redmod1)

Call:
glm(formula = low ~ lwt + racefac + smoke + ptl + ht, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.8188 -0.8035 -0.5457 0.9667 2.1530

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.09462 0.95704 0.099 0.92124
lwt -0.01673 0.00695 -2.407 0.01608 *
racefacBlack 1.26372 0.52933 2.387 0.01697 *
racefacOther 0.86418 0.43509 1.986 0.04701 *
smoke 0.87611 0.40071 2.186 0.02879 *
ptl 1.23144 0.44625 2.760 0.00579 **
ht 1.76744 0.70841 2.495 0.01260 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 200.48 on 182 degrees of freedom
AIC: 214.48

Number of Fisher Scoring iterations: 4

> # Test all the variables at once.
> G2 = redmod1$null.deviance-redmod1$deviance; G2
> [1] 34.18974
> 1-pchisq(G2,6)
> [1] 6.182967e-06
> # What about race controlling for the other variables?
> redmod2 = glm(low ~ lwt+smoke+ptl+ht,family=binomial)
> G2race = redmod2$deviance-redmod1$deviance; G2race
> [1] 7.47308
> 1-pchisq(G2race,2)
> [1] 0.02383643
> # Controlling for other variables, the estimated odds
> # of a low birth weight baby are ___ times as great
> # for a Black mother as compared to a White mother.
> exp(redmod1$coefficients[3])
> racefacBlack
> 3.538576
>
> # Controlling for other variables, the estimated odds
> # of a low birth weight baby are ___ times as great
> # for an Other mother as compared to a White mother.
> exp(redmod1$coefficients[4])
> racefacOther
> 2.373051
>
> # Controlling for other variables, are the odds of
> # a low birth weight baby different for Other and Black mothers?
> log odds = \(\beta_0 + \beta_1 \text{lwt} + \beta_2 \text{r1} + \beta_2 \text{r2} + \beta_4 \text{smoke} + \beta_5 \text{ptl} + \beta_6 \text{ht} \)
> = \(\beta_0 + \beta_1 \text{lwt} + \beta_2 (\text{r1}+\text{r2}) + \beta_4 \text{smoke} + \beta_5 \text{ptl} + \beta_6 \text{ht} \)

> r = r1+r2
> redmod3 = glm(low ~ lwt+r+smoke+ptl+ht,family=binomial)
> G2change = redmod3$deviance-redmod1$deviance; G2change
> [1] 0.5313281
> 1-pchisq(G2change,1)
> [1] 0.4660491
> # Consistent with no difference.

> # Wald Test
> Vr1 = vcov(redmod1)
> BOther = rbind(c(0,0,1,-1,0,0,0))
> WaldTest(L=BOther,thetahat=redmod1$coefficients,What=Vr1)
> W df p-value
> 0.5328525 1.0000000 0.4654101
> # Same conclusion