STA 431s13 Quiz 7

1. ($\overline{\mathbf{Y}_{points}}$) In this version of double measurement regression, the $q \times 1$ response vector \mathbf{Y}_i is observable, while the $p \times 1$ explanatory vector \mathbf{X}_i is latent and measured with error. The $p \times 1$ vectors $\mathbf{W}_{i,1}$ and $\mathbf{W}_{i,2}$ are observable. Independently for $i = 1, \ldots, n$, let

$$\mathbf{W}_{i,1} = \mathbf{X}_i + \mathbf{e}_{i,1}$$

 $\mathbf{W}_{i,2} = \mathbf{X}_i + \mathbf{e}_{i,2},$
 $\mathbf{Y}_i = \boldsymbol{\beta} \mathbf{X}_i + \boldsymbol{\epsilon}_i,$

where all expected values are zero, $V(\mathbf{X}_i) = \Phi$, $V(\mathbf{e}_{i,1}) = \Omega_1$, $V(\mathbf{e}_{i,2}) = \Omega_2$ and $V(\epsilon_i) = \Psi$. The random vectors \mathbf{X}_i , $\mathbf{e}_{i,1}$, $\mathbf{e}_{i,2}$ and ϵ_i are all independent of one another.

(a) Give the dimensions of the matrices below:

		Number of rows	Number of columns
	Φ	P	12
BY	Ω_1	12	12
	$oldsymbol{\Omega}_2$	12	P
	Æ	9	P
	B	0.0	g
l	*		- 1)

1 pt

(b) Calculate $C(\mathbf{W}_{i,1}, \mathbf{Y}_i)$. Show your work. Circle your final answer.

$$C(W_{i},Y) = E(W_{i},Y') = E(X+e_{i})(\beta X+\epsilon)'$$

$$= E(X+e_{i})(X'\beta'+\epsilon') = E(XX'\beta')+E(X\epsilon')$$

$$+ E(eX'\beta')+E(e_{i},\epsilon')$$

$$= E(XX')\beta'+E(X)E(\epsilon')+E(e)E(X')\beta'$$

$$+ E(e_{i})E(\epsilon')$$

$$= \Phi\beta'+O+O+G$$

$$W_{i,1} = X_i + e_{i,1}$$

$$W_{i,2} = X_i + e_{i,2}$$

$$Y_i = \beta X_i + \epsilon_i$$

1 pt

(c) Fill in the main diagonal and the upper triangular part of the partitioned covariance matrix below. You don't have to show any work.

	\mathbf{W}_1	\mathbf{W}_2	Y	
\mathbf{W}_1	D+D.	更	DB'	$-\left(\begin{array}{c c c} \Sigma_{11} & \Sigma_{12} & \Sigma_{13} \end{array}\right)$
$oldsymbol{\mathbf{W}}_2$		P+122	DB'	$oldsymbol{\Sigma}_{22} oldsymbol{\Sigma}_{23} oldsymbol{\Sigma}_{33}$
Y			BOB+4	

2 12

(d) Prove that all the parameter matrices are identifiable. Show your work. For reference, the matrices are listed in Question 1a.

$$\Phi = \Sigma_{12}$$

$$(\Phi' \Sigma_{13})' = \Sigma_{13} \Phi'' = \beta \Phi \Phi'' = \beta$$

$$\Omega_{1} = \Sigma_{11} - \Phi$$

$$\Omega_{2} = \Sigma_{22} - \Phi$$

$$\Psi = \Sigma_{33} - \beta \Phi \beta'$$

(e) (1 point) How many equality constraints are imposed on Σ by the model? The answer is an expression in p and q. Circle your answer.

$$\sum_{13} = \sum_{23} \ \ \ \sum_{12} \ \ \, \text{symmetric}$$

$$Pg + \frac{1}{2} P(P-1)$$

- 2. Please refer to your printout for the pig data.
 - (a) (2 points) For farm i, let $e_{i,1}$ refer to the measurement error in the number of breeding sows present according to questionnaire one, and let $e_{i,2}$ refer to the measurement error in the number of sows giving birth according to questionnaire one. Similarly, $e_{i,3}$ is the measurement error in the number of breeding sows present according to questionnaire two, and $e_{i,4}$ is the measurement error in the number of sows giving birth according to questionnaire two. Denote the measurement error covariance matrices by $V\left((e_{i,1},e_{i,2})'\right)=\Omega_1$ and $V\left((e_{i,3},e_{i,4})'\right)=\Omega_2$ (this is different from the meaning of these matrices in Question 1). You conducted a Wald test to see whether the two covariance matrices are equal or not. Give the Wald chi-squared statistic, the degrees of freedom and the p-value. These are numbers from your printout.

(b) (2 points) Denote the variance of the true number of breeding sows by ϕ . Give a numerical estimate of ϕ that is *not the MLE*. The answer is a number that will be on your printout if you used the **pcorr** option. Write the number in the space below.

Please attach your log file and your list file to the quiz paper. Make sure your name is written on both printouts.