Interactions in Logistic Regression

> # UCBAAdmissions is a 3-D table: Gender by Dept by Admit
> # Same data in another format:
> # One col for Yes counts, another for No counts.
> Berkeley = read.table("http://www.utstat.toronto.edu/~brunner/312f12/code_n_data/Berkeley2.data")

> Berkeley
 Gender Dept Yes No
1 Male A 512 313
2 Female A 89 19
3 Male B 353 207
4 Female B 17 8
5 Male C 120 205
6 Female C 202 391
7 Male D 138 279
8 Female D 131 244
9 Male E 53 138
10 Female E 94 299
11 Male F 22 351
12 Female F 24 317

> # Resp var is 2 cols. Second col is Y=1
> full = glm(cbind(No,Yes) ~ Dept*Gender,family=binomial,data=Berkeley)
> anova(full,test='Chisq')

Analysis of Deviance Table

Model: binomial, link: logit
Response: cbind(No, Yes)
Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>11</td>
<td>877.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dept</td>
<td>5</td>
<td>855.32</td>
<td>6</td>
<td>21.74 < 2.2e-16 ***</td>
</tr>
<tr>
<td>Gender</td>
<td>1</td>
<td>1.53</td>
<td>5</td>
<td>20.20 0.215928</td>
</tr>
<tr>
<td>Dept:Gender</td>
<td>5</td>
<td>20.20</td>
<td>0</td>
<td>0.00 0.001144 **</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Let's see what it means. Repeating some material from an earlier analysis ...

```r
noquote(gradeschool)

<table>
<thead>
<tr>
<th>Dept</th>
<th>MaleAcc</th>
<th>FemAcc</th>
<th>Chisq</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>62.1</td>
<td>82.4</td>
<td>17.25</td>
<td>3e-05</td>
</tr>
<tr>
<td>B</td>
<td>63</td>
<td>68</td>
<td>0.25</td>
<td>0.61447</td>
</tr>
<tr>
<td>C</td>
<td>36.9</td>
<td>34.1</td>
<td>0.75</td>
<td>0.38536</td>
</tr>
<tr>
<td>D</td>
<td>33.1</td>
<td>34.9</td>
<td>0.3</td>
<td>0.58515</td>
</tr>
<tr>
<td>E</td>
<td>27.7</td>
<td>23.9</td>
<td>1</td>
<td>0.31705</td>
</tr>
<tr>
<td>F</td>
<td>5.9</td>
<td>7</td>
<td>0.38</td>
<td>0.53542</td>
</tr>
</tbody>
</table>

Male = as.numeric(gradeschool[,2])
Female = as.numeric(gradeschool[,3])
cbind(Male,Female)

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62.1</td>
<td>82.4</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>36.9</td>
<td>34.1</td>
</tr>
<tr>
<td>4</td>
<td>33.1</td>
<td>34.9</td>
</tr>
<tr>
<td>5</td>
<td>27.7</td>
<td>23.9</td>
</tr>
<tr>
<td>6</td>
<td>5.9</td>
<td>7</td>
</tr>
</tbody>
</table>
```

On the log scale, differences are logs of odds ratios.

```r
logMale = log(Male); logFemale = log(Female)
plot(rep(1:6,2),c(logMale,logFemale), pch=" ", axes=F,
     xlab="Department",ylab="Log Percent Acceptance")
axis(1,1:6,LETTERS[1:6])  # X axis
axis(2)                   # Y axis
lines(1:6,logFemale,lty=1); lines(1:6,logMale,lty=2)
points(1:6,logMale); points(1:6,logFemale,pch=19)
legend(2,2.5,legend="Female Applicants",lty=1,bty="n",pch=19)
legend(2,2.3,legend="Male Applicants",lty=2,bty="n",pch=1)
title("Berkeley Graduate Admissions by Department")
```
Berkeley Graduate Admissions by Department

Log Percent Acceptance

- Female Applicants
- Male Applicants

Department

A B C D E F
> summary(full)

Call:
glm(formula = cbind(No, Yes) ~ Dept * Gender, family = binomial,
 data = Berkeley)

Deviance Residuals:
 [1] 0 0 0 0 0 0 0 0 0 0 0 0

Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.5442 0.2527 -6.110 9.94e-10 ***
DeptB 0.7904 0.4977 1.588 0.11224
DeptC 2.2046 0.2672 8.252 < 2e-16 ***
DeptD 2.1662 0.2750 7.878 3.32e-15 ***
DeptE 2.7013 0.2790 9.682 < 2e-16 ***
DeptF 4.1250 0.3297 12.512 < 2e-16 ***
GenderMale 1.0521 0.2627 4.005 6.21e-05 ***
DeptB:GenderMale -0.8321 0.5104 -1.630 0.10306
DeptC:GenderMale -1.1770 0.2996 -3.929 8.53e-05 ***
DeptD:GenderMale -0.9701 0.3026 -3.206 0.00135 **
DeptE:GenderMale -1.2523 0.3303 -3.791 0.00015 ***
DeptF:GenderMale -0.8632 0.4027 -2.144 0.03206 *

Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8.7706e+02 on 11 degrees of freedom
Residual deviance: -8.8818e-15 on 0 degrees of freedom
AIC: 92.94

Number of Fisher Scoring iterations: 3
Categorical by Quantitative Interactions

- Parallel regression lines on the log scale mean that
- Log differences between groups are the same for each level of x.
- Odds ratios are the same for each level of x.
- Odds are in the same proportion at each level of x.
- Called a “proportional odds” model.

Log odds of passing $= \beta_0 + \beta_1 x + \beta_2 c_1 + \beta_3 c_2$

<table>
<thead>
<tr>
<th>Course</th>
<th>c_1</th>
<th>c_2</th>
<th>Odds of Passing $= e^{\beta_0} e^{\beta_1 x} e^{\beta_2 c_1} e^{\beta_3 c_2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catch-up</td>
<td>1</td>
<td>0</td>
<td>$e^{\beta_0} e^{\beta_1 x} e^{\beta_2}$</td>
</tr>
<tr>
<td>Elite</td>
<td>0</td>
<td>1</td>
<td>$e^{\beta_0} e^{\beta_1 x} e^{\beta_3}$</td>
</tr>
<tr>
<td>Mainstream</td>
<td>0</td>
<td>0</td>
<td>$e^{\beta_0} e^{\beta_1 x}$</td>
</tr>
</tbody>
</table>

- Product terms represent departure from parallel lines.
- Translates to departure from proportional odds.
- To test proportional odds assumption, test regression coefficients of the product terms.

Log odds of passing $= \beta_0 + \beta_1 x + \beta_2 c_1 + \beta_3 c_2 + \beta_4 c_1 x + \beta_5 c_2 x$

<table>
<thead>
<tr>
<th>Course</th>
<th>c_1</th>
<th>c_2</th>
<th>Odds $= e^{\beta_0} e^{\beta_1 x} e^{\beta_2 c_1} e^{\beta_3 c_2} e^{\beta_4 c_1 x} e^{\beta_5 c_2 x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catch-up</td>
<td>1</td>
<td>0</td>
<td>$e^{\beta_0} e^{\beta_1 x} e^{\beta_2} e^{\beta_3} e^{\beta_4} e^{\beta_5}$</td>
</tr>
<tr>
<td>Elite</td>
<td>0</td>
<td>1</td>
<td>$e^{\beta_0} e^{\beta_1 x} e^{\beta_3} e^{\beta_5}$</td>
</tr>
<tr>
<td>Mainstream</td>
<td>0</td>
<td>0</td>
<td>$e^{\beta_0} e^{\beta_1 x}$</td>
</tr>
</tbody>
</table>

Odds ratios depend on the value of x.
> math = read.table("http://www.utstat.toronto.edu/~brunner/312f12/code_n_data/mathcat.data")
> math[1:5,]
 hsgpa hsengl hscalc course passed outcome
1 78 80 Yes Mainstrm No Failed
2 66 75 Yes Mainstrm Yes Passed
3 80 70 Yes Mainstrm Yes Passed
4 81 67 Yes Mainstrm Yes Passed
5 86 80 Yes Mainstrm Yes Passed
> attach(math) # Variable names are now available
>
> # Make dummy vars for course to be sure what's going on
> n=length(hsgpa)
> c1 = c2 = numeric(n)
> c1[course=='Catch-up'] = 1
> c2[course=='Elite'] = 1
> # table(c1,course); table(c2,course)
> c1gpa = c1*hsgpa; c2gpa = c2*hsgpa
>
> # Reduced model will have no interactions
> redmod = glm(passed ~ hsgpa+c1+c2, family=binomial)
> fullmod = glm(passed ~ hsgpa+c1+c2+c1gpa+c2gpa, family=binomial)
> anova(redmod,fullmod,test='Chisq')
Analysis of Deviance Table

Model 1: passed ~ hsgpa + c1 + c2
Model 2: passed ~ hsgpa + c1 + c2 + c1gpa + c2gpa

<table>
<thead>
<tr>
<th></th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>390</td>
<td>428.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>388</td>
<td>428.45</td>
<td>2</td>
<td>0.44679</td>
<td>0.7998</td>
</tr>
</tbody>
</table>
>
> # Can do it with factors
> contrasts(course) = contr.treatment(3,base=3)
> red = glm(passed ~ hsgpa+course, family=binomial)
> full = glm(passed ~ hsgpa+course+hsgpa:course, family=binomial)
> anova(red, full, test='Chisq')
Analysis of Deviance Table

Model 1: passed ~ hsgpa + course
Model 2: passed ~ hsgpa + course + hsgpa:course
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 390 428.90
2 388 428.45 2 0.44679 0.7998

> anova(redmod, fullmod, test='Chisq') # For comparison
Analysis of Deviance Table

Model 1: passed ~ hsgpa + c1 + c2
Model 2: passed ~ hsgpa + c1 + c2 + c1gpa + c2gpa
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 390 428.90
2 388 428.45 2 0.44679 0.7998

Consistent with proportional odds.
> summary(fullmod)

Call:
glm(formula = passed ~ hsgpa + c1 + c2 + c1gpa + c2gpa, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.4720 -0.9662 0.4454 0.8957 2.1617

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.2892 2.1537 -6.635 3.25e-11 ***
hsgpa 0.1866 0.0274 6.817 9.30e-12 ***
c1 -4.0831 9.1561 -0.446 0.656
 c2 -4.9421 10.3161 -0.479 0.632
 c1gpa 0.0360 0.1177 0.306 0.760
 c2gpa 0.0767 0.1349 0.568 0.570

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 530.66 on 393 degrees of freedom
Residual deviance: 428.45 on 388 degrees of freedom
AIC: 440.45

Number of Fisher Scoring iterations: 5

> summary(full)

Call:
glm(formula = passed ~ hsgpa + course + hsgpa:course, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.4720 -0.9662 0.4454 0.8957 2.1617

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.2892 2.1537 -6.635 3.25e-11 ***
hsgpa 0.1866 0.0274 6.817 9.30e-12 ***
course1 -4.0831 9.1561 -0.446 0.656
 course2 -4.9421 10.3161 -0.479 0.632
 hsgpa:course1 0.0360 0.1177 0.306 0.760
 hsgpa:course2 0.0767 0.1349 0.568 0.570

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 530.66 on 393 degrees of freedom
Residual deviance: 428.45 on 388 degrees of freedom
AIC: 440.45

Number of Fisher Scoring iterations: 5
> betahat = redmod$coefficients; betahat
> (Intercept) hsgpa c1 c2
> -14.7375649 0.1922924 -1.2848883 0.9338170
>
> > gpa = 50:100
> > mainstream = betahat[1] + betahat[2]*gpa
> >
> > GPA = rep(gpa,3); Pass = c(catchup,elite,mainstream)
> > plot(GPA,Pass,pch=' ')
> > lines(gpa,catchup,lty=1)
> > lines(gpa,elite,lty=2)
> > lines(gpa,mainstream,lty=3)
> > title("Parallel Estimated Log Odds")
oddscu = exp(catchup); oddsel = exp(elite)
oddsmain = exp(mainstream)
Odds = c(oddscu,oddsel,oddsmain)
plot(GPA,Odds,pch=' ')
lines(gpa,oddscu,lty=1)
lines(gpa,oddsel,lty=2)
lines(gpa,oddsmain,lty=3)
title("Proportional Estimated Odds")