STA 302 Quiz 2

Name	
Student No.	

- 1. For the MINITAB output below, n=10, H_0 is $\beta_1 \ge 0$ and H_a is $\beta_1 < 0$.
 - a) What is the critical value of the test statistic at $\alpha = .01$?
 - b) What is the value of the test statistic t*?
 - c) Do you reject H_0 ? Yes or no.
- d) With this null and alternative hypothesis, what can you conclude about the presence of a linear relationship between X and Y?

Predictor	Coef	Stdev	t-ratio	P
Constant	6.6567	0.6445	10.33	0.000
C1	2.9740	0.1039	28.63	0.000
s = 0.9434	R-sq = :	99.0 %	R-sq(adj) =	98.9 x

- 2) For the MINITAB output above,
 - a) Construct a 99% confidence interval for β_1 .
 - b) Are your results consistent with what you obtained in question 1? Explain.

Name		
Student I	Number	

Midterm Exam STA 302f 1990 Erindale College Aids Allowed: Calculator, Text book

- 1. Let $Y_i = \beta_0 + X_i + \epsilon_i$, i=1, ..., n where the X_i are known constants, β_0 is an unknown constant, and the ϵ_i are independent random variables with expected value zero and common variance σ^2 .
 - a) (5 points) What is $E(Y_i)$?
- b) (20 points) Find the least-squares estimate of β_0 ; that is, find the value of β_0 such that $Q(\beta_0) = \sum\limits_{i=1}^n (Y_i E(Y_i))^2$ is minimized. Show that it is a minimum. Confine your answer to the space below.

For problems 2 through 18, write T for true or F for false. These problems are worth 3 points each.

- 2. _____ The least-squares line is chosen so as to minimize the sum of squared vertical distances of the points (on a scatterplot) from the line.
- 3. _____ If your data do not include any observations with $X_i \le 0$, it can be very misleading to interpret b_0 .
- 4. _____ For the least-squares method to be valid, the error terms ϵ_i must be distributed normally with mean zero and common variance σ^2 .
- 5. _____ <u>SSE</u> represents the proportion of variation in the SSTO dependent variable that is explained by the independent variable.

- 6. $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2 = 0$
- 7. _____ For the simple linear regression model (2.1) on p. 31, $E(Y_i) = \beta_0 + \beta_1 X_i + \epsilon_i$.
- 8. _____ Model (3.1) on p. 62 implies that if there is any relationship at all between X and Y, it must be linear.
- 9. _____ The confidence intervals and significance tests of chapter 3 are usually valid when n is large, even when the assumption of normality for the error terms is violated.
- 10. _____ We reject H_0 at significance level \propto if and only if $p>\propto$.
- 11. ______ The confidence intervals and significance tests of chapter 3 are still valid when the X_i are random variables, provided that they are independent of ϵ_i , their distribution does not involve β_0 , β_1 or σ^2 , and all probability statements are viewed as being conditional on the particular observed values of the X_i .
- 12. _____ $E(Y_i)=b_0+b_1X_i$, where b_0 and b_1 are the least-squares estimates of β_0 and β_1 respectively.
- 13. _____ For simple linear regression, there is both a t-test and an F-test for H_0 : β_1 =0 versus H_a : β_1 ≠0.
- 14. _____ For simple linear regression, if $b_1=0$, then $b_0=\overline{Y}$.
- 15. _____ Consider H_0 : $\beta_1 \ge 0$ versus H_a : $\beta_1 < 0$. Even if H_0 is true, there could still be a negative correlation (in the population) between X and Y.
- 16. _____ Suppose you timed 1000 university students in the 100 meter dash, then waited a week and timed them again. Further, suppose that the mean and standard deviation of their times did not change from the first test to the second. Still, you would expect the very fastest students to run somewhat faster the second time.

- 17. _____ The model (3.1) on p. 64 implies that the parameter σ^2 is normally distributed.
- 18. _____ We reject the null hypothesis that β_1 equals a particular value (using a 2-tailed test) at significance level \propto if and only if the $(1-\alpha)100\%$ confidence interval for β_1 contains that particular value.
- 19. (10 points) For the ordinary simple linear regression model (2.1) on p. 31, show that $\sum_{i=1}^{n} \widehat{Y}_i = \sum_{i=1}^{n} Y_i$. This is a short proof.

Confine your answer to the space below.

Problems 20 through 24 refer to the following Minitab output.

These questions are worth 2 points each. Write your answers on the lines.

Worksheet retrieved from file: prob2.26 MTB > regress c2 1 c1

The regression equation is C2 = 183 + 0.262 C1

Predictor	Coef	Stdev	t-ratio	Р
Constant	182.97	12.72	14.38	0.000
C1	0.2616	0.1783	1.47	0.164

$$s = 10.29$$
 R-sq = 13.3% R-sq(adj) = 7.1%

Analysis of Variance

SOURCE	DF	SS	M S	F	Р
Regression	1	228.0	228.0	2.15	0.164
Error	14	1483.0	105.9		
Total	15	1711.0			

- 20. Is there a statistically significant relationship between X and Y at \propto =.20, two tailed?
- 21. What is the estimated standard deviation of b_0 ? _____

22. Can you reject H_0 : β_0 =0 at α =.01? ______

23. What is
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
 ? ______

24. What proportion of the variation in the dependent variable is explained by the independent variable?

Questions 25 through 30 refer to question 2.26 (Robbery rate) on p. 58-59. Assume model (3.1) on p. 64. Some additional results are:

$$n = 16$$
 $\overline{X} = 69.875$
 $b_0 = 182.97$ $b_1 = .2616$
 $SSE = 1483.0$ $MSE = 105.9$
 $\sum_{i=1}^{n} (X_i - \overline{X})^2 = 3331.75$ $\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = 1711.0$

$$\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = 871.5 \qquad \sum_{i=1}^{n} X_i^2 = 81452.0$$

25. (3 points) The value of the correlation coefficient r is

- a) 0.187
- b) 0.365
- c) 0.262
- d) 0.133
- e) -0.133

- 26. (3 points) What is the predicted increase in the robbery rate for a population density increase of one person per unit area?
 - a) 182.97
 - b) 183.2316
 - c) .2616
 - d) 69.875
 - e) .0684
- 27. (3 points) A 95% confidence interval for β_1 is given by
 - a) (.2253, 1.687)
 - b) (.1484, 3748)
 - c) (-.1208, .6440)
 - d) (.8977, 1.0564)
 - e) (-.1129, .8071)
- 28. (3 points)Is the t-test for H_0 : β_1 =0 statistically significant at α =.05, two-tailed? Do you reject H_0 ?
 - a) Yes, Yes
 - b) Yes, No
 - c) No, Yes
 - d) No, No
 - e) Sample size is too small for uniform convergence.
- 29. (3 points) A new city with a population density of 50 is to be observed. Give a 95% confidence interval for its predicted robbery rate.
 - a) (184.87, 207.23)
 - b) (189.29, 202.81)
 - c) (186.66, 205.44)
 - d) (185.702,206.398)
 - e) (.2253, 1.687)

Page 7

30. (4 points) Explain why b_0 is meaningless here. Use the words "city" and "robbery" in your answer or you will receive no credit.

Erindale College - University of Toronto
Faculty of Arts and Science
December Examinations 1990
STA 302F

Duration - 3 hours

Aids allowed: Calculator, Textbook

Name (Please print	:)
Signature	
Student Number	

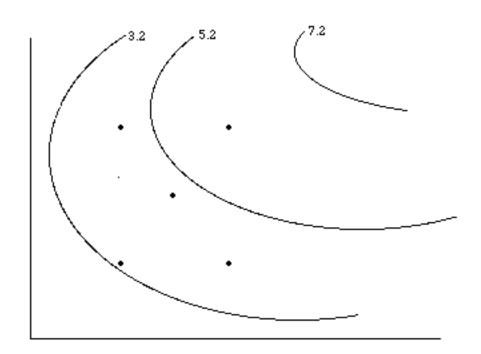
- 1. (5 pts) For model 7.18 on p. 237, derive the variance-covariance matrix of the vector $\widehat{\mathbf{Y}}$. Use only equations 6.45 through 6.47 on p. 203, the usual rules of matrix algebra and $\mathbf{b} = (\mathbf{X'X})^{-1}\mathbf{X'Y}$.
- 2. (7 pts) For model 7.18 on p. 237, show that $\mathbf{X'}(\mathbf{Y} \widehat{\mathbf{Y}}) = \mathbf{0}_{p \times 1}$. Use only equations 6.45 through 6.47 on p. 203, the usual rules of matrix algebra and $\mathbf{b} = (\mathbf{X'X})^{-1}\mathbf{X'Y}$.

Page 8

3. (3 pts) Refer to model 7.18 on p. 237. In addition, $Var(\epsilon_i) = \frac{\sigma^2}{w_i}$. Using only equations 6.45 through 6.47 on p. 203, the usual rules of matrix algebra and equation (11.61) on p. 419, show that for weighted least squares, **b** is unbiased for **\beta**.

4. (10 pts) Suppose we have a three-category independent variable and a single quantitative independent variable. The model is $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_{12} X_{i1} X_{i2} + \beta_{13} X_{i1} X_{i3} + \epsilon_i, \text{ where } X_{i2} \text{ and } X_{i3} \text{ are indicator variables for the first two categories of the qualitative independent variable. Show that the test for equality of the three slopes is the same as testing <math>H_0$: $\beta_{12} = \beta_{13} = 0$.

5. (5 pts) In a response surface drug study, the contour plot of the (predicted) response surface looks something like the picture below. The five dots • are the points at which sample data were collected. Your boss shows you the contour plot and asks what should be done next. How do you respond?



- 6. (7 pts) Consider the SMSA data set described on p. 1161-1162, using only variables 10, 11 and 12. It is claimed that even if we control for income, crime rate still varies by geographic region. Give the matrices \mathbf{C} , $\mathbf{\beta}$ and \mathbf{h} for \mathbf{H}_0 : $\mathbf{C}\mathbf{\beta} = \mathbf{h}$. Assume that the rate at which crime rate changes as a function of income is the same in each geographic region.
- 7. (7 points) Refer again to the SMSA data set, this time restricting your attention to variables 4,6,7,10 and 11, and assuming that the independent variables do not interact. You want to simultaneously determine whether (a) controlling for all other variables, number of doctors and number of hospital beds are related to crime rate, and (b) the regression coefficient for percent of population in cities is equal to one. Give the matrices \mathbf{C} , $\mathbf{\beta}$ and \mathbf{h} for \mathbf{H}_0 : $\mathbf{C}\mathbf{\beta} = \mathbf{h}$.

Page 10

Questions 8 through 11 refer to the following MINITAB output.

```
SUBC> dw.
The regression equation is
C4 = 1.63 + 0.380 C2 - 0.0231 C3 + 0.00042 C7 - 0.00362 C10 + 0.00506 C11
Predictor
                Coef
                           Stdev
                                    t-ratio
                                               0.212
Constant
               1.631
                           1.298
                                       1.26
C2
                                       5.58
                                               0.000
             0.37975
                         0.06808
С3
            -0.02308
                         0.02408
                                      -0.96
                                               0.340
C7
            0.000419
                        0.003034
                                       0.14
                                               0.890
C10
           -0.003622
                        0.003890
                                      -0.93
                                               0.354
            0.005057
                        0.001893
                                       2.67
C11
                                               0.009
s = 1.098
                R-sq = 35.9%
                                 R-sq(adj) = 32.9%
Analysis of Variance
SOURCE
             DF
                         SS
                                     MS
                                                F
             5
                     72.275
                                 14.455
                                            11.98
                                                     0.000
Regression
Error
            107
                    129.105
                                  1.207
                    201.380
Total
            112
```

Durbin-Watson statistic = 2.00

DF

1

1

1

1

1

SEQ SS

57.305

2.075

4.018

0.263

8.614

SOURCE

C2

C3

C7

C10

C11

MTB > regress c4 5 c2 c3 c7 c10 c11;

Continued on page 8

Page 11

Questions 8-11 refer to the MINITAB output on page 7.

8. ((8 pts)) F	ill	in	the	blanks.
O. 1	\mathcal{O} \mathcal{P} \mathcal{O}	/ 1	1111	111	CLIC	DIGITING.

- 9. (2 pts) Once X_1 has been taken into account, what proportion of the <u>remaining</u> variation in Y is explained by X_2 , X_3 , X_4 and X_5 together?
- 10. (1 pt) Is there evidence of autocorrelation in the error terms? (Yes or No)
- 11. (5 pts) Give a 95% Bonferroni joint confidence interval for β_2 and β_3 . Use the closest df in the table as an approximation.
- 12. (5 pts) Consider the model for which $E(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_{12} X_{i1} \ X_{i2}. \ \ Demonstrate \ that \ \beta_{12} \neq 0 \ \ means$ that the relationship of Y to X_1 depends upon the value of X_2 .

Questions 13 through 55 are worth one point each. Answer each one T for true or F for false. Scores on this section will be corrected for guessing, so guess only if you think your chances of guessing right are better than 50-50.

- 13. ____It is impossible for a collection of error terms to be both independent and autocorrelated.
- 14. ____In a situation where we are comparing regression models with differing numbers of independent variables, it makes sense to use the adjusted R^2 (adjusted for degrees of freedom) rather than the usual R^2 = SSR/SSTO.
- 15. ____Suppose that $\hat{Y} = 2.2 4X_1 + 11.2X_2 + 3.1X_1X_2$. For a change of one unit in X_2 , the predicted change in Y is 11.2 units.
- 16. ____ Weighted least squares is used in situations where the variance of the Y's does not appear to be equal for all levels of X.
- 17. ____ When there is multicolinearity, it is especially important to use two-tailed rather than one-tailed t-tests.
- 18. ____In stepwise regression, it is possible that an X variable brought in at an early stage will be subsequently dropped if it is no

Page 13

longer helpful in conjunction with X variables added at later stages.

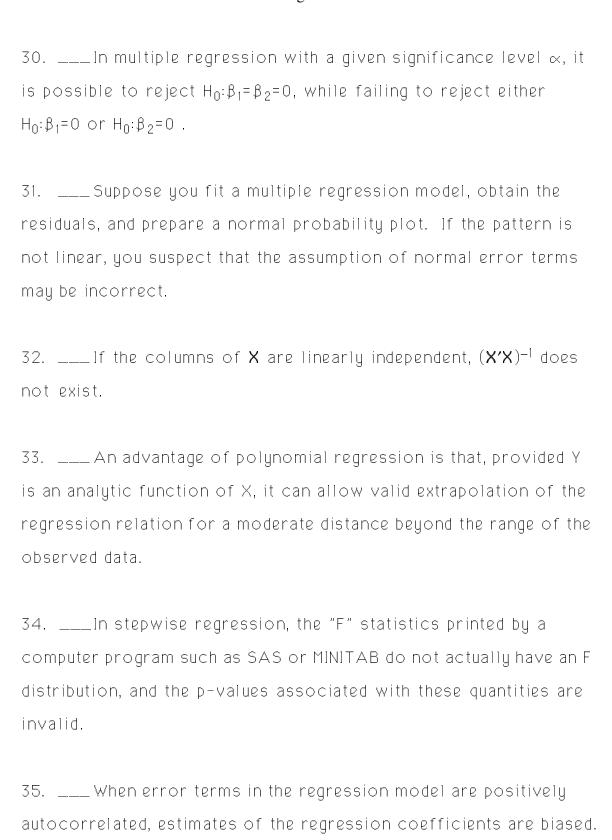
- 19. ____For testing the significance of the difference between two group means, suppose we use a simple linear regression model with normal error terms and X_i a dummy variable for group membership. The t-test for H_0 : β =0 is identical to the usual independent (2-sample) t-test for H_0 : μ_1 = μ_2 .
- 20. ___ The concept of an interaction between two quantitative independent variables is undefined.
- 21. ____ Simple linear regression was used to test the difference in pain tolerance between males and females -- larger values of Y indicate more tolerance. The dummy variable X = 1 if the subject is female, and 0 if the subject is male. A positive value of b_1 would indicate that in the sample, males had a higher pain tolerance than females.
- 22. ___For the model $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_{12} X_{i1} X_{i2} + \epsilon_i$, the least-squares method fits a plane through the cloud of (X_1, X_2, Y) points so that the sum of squared vertical distances of the points from the plane is minimized.
- 23. ____ Suppose X is nationality (country of origin) and Y is freshman grade point average. It does not make sense to do simple

linear regression in this situation.

24. ___For the general regression model (7.18) on p. 237, the coefficient of multiple determination R^2 is exactly equal to the squared correlation r^2 between the Y_i and \hat{Y}_i variables.

Continued on page 12

- 25. ____In stepwise regression, "tolerance" is the minimum proportion of explained variation that will allow an independent variable to be added to the model.
- 26. ____In the extra sum of squares approach to multiple regression, SSE(R)-SSE(F) = SSR(F)-SSR(R)
- 27. ___In multiple regression, the standardized regression coefficient for X_k equals the simple correlation between X_k and Y.
- 28. ____In well-designed experiments involving quantitative independent variables, a procedure for reducing the number of independent variables after the data are obtained is not necessary.
- 29. ____For the regression model 7.18 on p. 237, (Y-Xb)'(Y-Xb) is minimized if $b = (X'X)^{-1}X'Y$, provided that $(X'X)^{-1}$ exists.



- 36. ____If two different dummy variables are used to represent sex of respondent in a survey, X'X will not be singular if the constant term β_0 is omitted from the regression equation.
- 37. ___A market researcher would like to predict price of automobile purchased from the purchaser's age, income, sex and number of children. Multiple regression is a reasonable technique to apply.
- 38. ____ There can be problems with the numerical accuracy of $(X'X)^{-1}$ when the determinant of X'X is close to zero.
- 39. ____In the presence of positively correlated error terms, the usual tests of statistical significance are still approximately valid for large samples.
- 40. ____If you use the extra sum of squares test H_0 : β_k =0, the F* statistic is exactly the square of t* = $\frac{b_k}{s\{b_k\}}$.
- 41. ____If the independent variables are highly correlated among themselves, it is still possible to predict mean responses and new observations accurately, provided that R² is large and the predictions are made within the region of observations.

- 42. ____When severe multicolinearity exists, adding or deleting an independent variable from the model may substantially change the values of the other regression coefficients.
- 43. ____For the full model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ and the reduced model $Y_i = \beta_0 + \epsilon_i$, SSE(R) = $\sum_{i=1}^{n} (Y_i \overline{Y})^2$
- 44. ____ When error terms are positively autocorrelated, MSE may seriously underestimate their variance.
- 45. ____It is possible that $b_k = 0$, and yet H_0 : $\beta_k = 0$ is rejected.
- 46. ___In a study with one independent variable that takes on 5 distinct values, the pure error lack of fit test is equivalent to fitting a 5th degree polynomial and then testing H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0.$
- 47. ____Let Y_i =sales, X_{i1} =advertising expenditures, and X_{i2} be a dummy variable for nationality (1 if the firm is Canadian, 0 if the firm is U.S.). The situation where Canadian and U.S. firms have the same slope but different intercepts is represented by the model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_{12} X_{i1} X_{i2} + \epsilon_i$.

48When independent variables are strongly correlated with
each other, the residuals will not sum to exactly zero.
49In simple linear regression with autocorrelated error
terms, a good remedial measure is to take the natural log (In) of
both the X and the Y variables, adding a constant if necessary to
ensure that all the numbers are positive.
50 There can be problems with the numerical accuracy of
$(\mathbf{X'X})^{-1}$ when the magnitudes of the X variables differ greatly from
one another.
51 When the <u>dependent</u> variable is measured with error,
multiple regression can be extremely misleading.
52 When one or more <u>independent</u> variable are measured with
error, multiple regression can be extremely misleading.
53To represent a qualitative independent variable with k
categories in a multiple regression model with an intercept, only k-
1 dummy variables are needed.
54The estimated standard deviations of the regression
coefficients become small when the independent variables in the
model are highly correlated with one another.
55Suppose you weigh yourself every morning and record the
result. You would expect this time series to be negatively
autocorrelated.