STA437H1S/2005H1S
Applied Multivariate Analysis

Instructor: K. Knight (office: Sidney Smith 5016G; e-mail: keith@utstat.utoronto.ca)
My office is at the west end of the 5th floor.

Office hours: Tuesdays from 10am to noon, or by appointment. Do not hesitate to contact
me by e-mail as many problems you might encounter can be easily resolved this way.

About the course: The main goal of this course is to provide students with the some
of the tools necessary to analyze multivariate data. The focus of the course will primarily
be on exploratory (graphical and computational), rather than inferential, methods; we will
also consider some of the statistical theory behind these methods. In addition, we will make
extensive use of linear algebra in the course.

Textbook: The required textbook is An Introduction to Applied Multivariate Analysis using
R by Everitt and Hothorn (Springer). It is available for free via Springerlink if you connected
to a University of Toronto computer or proxy server. The textbook will be supplemented by
handouts (through the course’s Blackboard site portal.utoronto.ca).

Computing: We will use the software package R extensively in this course both for data
analysis as well as some numerical computation. R is free software and can be downloaded
(for Windows, Mac, and Linux operating systems) from cran.utstat.utoronto.ca. Of
interest to many of you will be RStudio, which provides a very nice environment for using R;
information on RStudio (including downloads) can be found at www.rstudio.com.

A useful book that gives a good introduction to R programming is

A First Course in Statistical Programming with R by Braun and Murdoch (Cam-
bridge University Press)

The textbook for this course also provides a lot of examples of R code as will the handouts
for the course.

Evaluation: The course grade will be based on four homework assignments (10% each for
a total of 40%), a midterm exam (25%), and a final exam (35%).

• Homework assignments will involve both data analysis and theory problems. Two
 assignments will be handed in before the midterm and two after.

• Students enrolled in STA2005H1S will typically be required to do some additional work
 on the homework assignments as well as on the exams.

• The midterm exam is scheduled for Friday March 4 from 1:10pm to 3pm (the usual
 lecture time) at a location to be announced later. If this exam is missed due to illness
or any other circumstances (with appropriate documentation), the weight from the midterm will be carried over to the final exam.

- The final exam will be held during the April exam period at a date and time to be announced later.

- Students should familiarize themselves with the University’s policies on academic integrity, which can be found at www.artsci.utoronto.ca/osai/students.

Syllabus

The following topics will be covered in the course:

Introduction. Review of linear algebra; covariance, correlation, and distance measures; the multivariate normal distribution; introduction to graphical models.

Simple multivariate visualization. pair-wise scatterplots; finding “interesting” projections (projection pursuit); “The Grand Tour”.

Principal components analysis. Computation and interpretation; the biplot; multidimensional scaling; independent components analysis.

Cluster Analysis. hierarchical clustering; k-means clustering, model-based clustering.

Classification. Bayes classification; Fisher’s linear discriminant; logistic regression; non-parametric methods.

Multivariate Regression. MANOVA, repeated measures designs, functional data analysis.