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Summary

We consider the use of estimating functions which are not unbiased. Typically, to result

in consistent estimators, unbiasedness of estimating functions is a pre-requisite. However,

it may sometimes be easier to find a useful estimating function that is biased, especially

in the presence of missing data or misclassified observations. We show that the root of

the estimating function can be modified to give a consistent and asymptotically normal

estimator, and illustrate this on several examples with binary data. We compare this to

the alternative approach of adjusting the estimating function, and show that it can be more

efficient.

Key Words: Asymptotic normality; Consistency; Efficiency; Estimating function; Unbi-

asedness.



1 Introduction

We consider estimation of a vector parameter θ, based on a sample y1, . . . ,yn of independent

and identically distributed random vectors on Ω, drawn from the family of densities {f(y; θ) :

θ ∈ Θ}, where Θ is a subset of a Euclidean space of dimension p. As an alternative to

maximum likelihood estimation, we assume we have a p × 1 vector of estimating functions

g(y; θ), and define an estimator θ̃n as the root of the set of p equations

Gn(θ̃n) = n−1

n∑
i=1

g(yi; θ̃n) = 0.

Under regularity conditions on the model, and the condition that the estimating func-

tion is unbiased, Eθ{g(Yi; θ)} = 0, the resulting estimator is consistent and asymp-

totically normal, with asymptotic variance given by the Godambe information J(g) =

{Eθ(∂g/∂θT )}−1Eθ(ggT ){Eθ(∂gT/∂θ)}−1 (Godambe, 1960). Yanagimoto and Yamamoto

(1991) give a number of examples illustrating the role of unbiasedness of estimating equa-

tions, and relating it to conditional likelihood inference in the context of exponential families.

In some practical contexts, however, there may be a natural choice of working estimating

function that is not unbiased. The most direct approach to correcting a biased estimating

function h(y; θ) is to compute Eθ{h(Y; θ)} and construct a modified estimating function

H̃n(θ) = n−1

n∑
i=1

h(yi; θ)− Eθ{h(Yi; θ)}; (1)

if Eθ{h(Yi; θ)} cannot be computed exactly then a suitable approximation might be avail-

able. For example, McCullagh and Tibshirani (1990) use a bootstrap estimate of the mean

to correct the bias of score functions derived from the profile log-likelihood; Yanagimoto

and Yamamoto (1991) illustrate correcting estimating functions derived from the method of

moments.

In this paper we consider a different, but related, approach to deriving a consistent

estimate of θ from a set of biased estimating functions. We use the notation h(y; θ) for the

vector of biased estimating functions; i.e. we assume Eθ{h(Y; θ)} 6= 0. Assume that the

equation

Hn(θ) = n−1

n∑
i=1

h(yi; θ) = 0

has a root θ̂∗n ∈ Θ for any given random sample y1, ...,yn, and that θ∗ ∈ Θ exists, where θ∗

is defined by

Eθ{h(Y; θ∗)} = 0. (2)
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Equation (2) defines θ as a function of θ∗, say

θ = k(θ∗) (3)

for some p-vector of functions k(·) , and we use this to define a new estimator of θ as

θ̂n = k(θ̂∗n). (4)

As an illustration we consider a binary data problem with a simple missing data structure.

Example 1: binary pairs with missing data

Let Yi = (Yi1, Yi2)T be a random sample of bivariate binary vectors, i = 1, ..., n. Assume

that E(Yij) = µ, j = 1, 2, and corr(Yi1, Yi2) = ρ for i = 1, ..., n. Let θ = (µ, ρ)T denote

the parameter of interest. Let Rij = 1 if Yij is observed, and 0 otherwise, and define

λij = P (Rij = 1|Yi1, Yi2), and λi12 = P (Ri1 = 1, Ri2 = 1|Yi1, Yi2). Assume

logit λij = α0 + α1Yij,

and

logit λi12 = γ0 + γ1(Yi1 + Yi2).

Let

uµ(Yi; θ) = Yi1 + Yi2 − 2µ

and

uρ(Yi; θ) = Yi1Yi2 − ρµ(1− µ)− µ2

be constructed based on the method of moments, and

u(Yi; θ) = {uµ(Yi; θ), uρ(Yi; θ)}T .

If there is no missing data,
∑n

i=1 u(Yi; θ) is unbiased for θ, yielding a consistent estimator

for θ:

µ̂n =

∑n
i=1(Yi1 + Yi2)

2n
, ρ̂n =

∑n
i=1 Yi1Yi2 − nµ̂2

n

nµ̂n(1− µ̂n)
. (5)

Now if we naively apply these estimating functions to the observed data, we have

hµ(Yi; θ) = Ri1Yi1 +Ri2Yi2 − (Ri1 +Ri2)µ,

hρ(Yi; θ) = Ri1Ri2{Yi1Yi2 − ρµ(1− µ)− µ2},

and

h(Yi; θ) = {hµ(Yi; θ)hρ(Yi; θ)}T .
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Setting
∑n

i=1 h(Yi; θ) = 0 leads to

µ̂∗n =

∑n
i=1(Ri1Yi1 +Ri2Yi2)∑n

i=1(Ri1 +Ri2)
, (6)

ρ̂∗n =

∑n
i=1 Ri1Ri2Yi1Yi2 − µ̂∗n

∑n
i=1Ri1Ri2

µ̂∗n(1− µ̂∗n)
∑n

i=1 Ri1Ri2

. (7)

To find θ∗ we use (2) to compute

Eθ

 hµ(Yi; θ
∗)

hρ(Yi; θ
∗)

 =

 Eθ(Ri1Yi1 +Ri2Yi2)− µ∗Eθ(Ri1 +Ri2)

Eθ(Ri1Ri2Yi1Yi2)− {ρ∗µ∗(1− µ∗) + µ∗2}Eθ(Ri1Ri2)

 = 0. (8)

Note that

Eθ(RijYij) = EYER|Y (RijYij) = EY (Yijλij) =
exp(α0 + α1)

1 + exp(α0 + α1)
µ.

Similarly,

Eθ(Rij) =
exp(α0 + α1)

1 + exp(α0 + α1)
µ+

exp(α0)

1 + exp(α0)
(1− µ),

Eθ(Ri1Ri2Yi1Yi2) =
eγ0+2γ1

1 + eγ0+2γ1
{ρµ(1− µ) + µ2}, and

Eθ(Ri1Ri2) =
exp(γ0 + 2γ1)

1 + exp(γ0 + 2γ1)
{ρµ(1− µ) + µ2}+

2 exp(γ0 + γ1)

1 + exp(γ0 + γ1)
{µ− ρµ(1− µ)− µ2}

+
exp(γ0)

1 + exp(γ0)
(1− 2µ+ ρµ− ρµ2 + µ2).

Therefore, the first equation of (8) gives

µ =
µ∗ exp(α0)/{1 + exp(α0)}

(1− µ∗) · exp(α0 + α1)/{1 + exp(α0 + α1)}+ µ∗ exp(α0)/{1 + exp(α0)}

with the same relationship between µ̂n and µ̂∗n. It is easily shown that µ is equal to, less than,

or greater than µ∗ as α1 = 0, α1 > 0 and α1 < 0. In this model if α1 = 0 the data is missing

completely at random, and the estimator based on the observed data is consistent, as has

been noted in the literature; see, for example, Fitzmaurice, Molenberghs and Lipsitz (1995).

However, if the missing data is not missing completely at random, then the moment estimator

based only on the observed data either inflates or attenuates the true parameter, depending

on how the response affects missingness. This result provides an interesting and transparent

characterization of the asymptotic bias induced by ignoring missing values. Applying the

second equation of (8), we obtain the relationship between ρ and ρ∗. If γ1 = 0, α1 = 0, then

ρ = ρ∗, showing that using the available data can still produce a consistent estimator of the

correlation under missing completely at random mechanisms.
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In this example we get the same estimators for µ and ρ by using (8) to compute

Eθ{h(Y; θ)} and constructing H̃n(θ), as at (1). In Appendix A we show that this will be

the case whenever the estimating equation h(y; θ) has a structure that is linear in functions

of y and θ, and give a simple example where this does not hold.

In Section 2 we give results on asymptotic consistency and normality for the estimator

θ̂∗n, and hence for θ̂n. The results generalize the discussion in White (1982), which studies

model misspecification under the likelihood formulation. It is closely related to the results

of Jiang, Turnbull and Clark (1999), who used methods very similar to those in this paper

in the context of semiparametric Poisson models. Their biased estimating equations are the

score equations from a likelihood function obtained from a working model that is subject to

misspecification, and their bridge function, s0(·) is the inverse of k(θ∗).

In Section 3 we illustrate the approach with a series of examples of biased estimating

equations for binary data models, where the bias is caused by missing data or misclassified

data. In Section 4 we outline a brief comparison for the estimators obtained from (1) and

(4), and Section 5 provides a brief discussion.

2 Asymptotic Results

Theorem 1: Suppose h{y; θ) = (h1(y; θ), ..., hp(y; θ)}T is a vector of functions defined on

Ω×Θ such that hj(y; θ) is a continuous function of θ for each y and a measurable function

of y for each θ, j = 1, ..., p. Assume that Θ is a convex compact set and the true distribution

of Y is F (y; θ), with density f(y; θ). Assume |hj(y; θ)| ≤ mj(y) for all y and θ where mj(·)
is integrable with respect to F , j = 1, ..., p. Let H(θ) = Eθ{h(Y; θ)}. If H(θ) = 0 has a

unique solution θ∗ and Hn(θ) = 0 has a solution θ̂∗n, then

θ̂∗n →p θ
∗ as n→∞

for almost every sequence Y1,Y2, ... which is a random sample from F .

Proof: Given j, by Theorem 2 of Jennrich (1969), we have, for almost every sequence {Yn},

n−1

n∑
i=1

hj(Yi; θ)→
∫
hj(y; θ)dF (y)

uniformly for all θ ∈ Θ, thus,

supθ∈Θd{Hn(θ),H(θ)} →p 0 (9)

where d(x,y) = ||x− y|| is the Euclidean distance between x and y. The set {θ : d(θ, θ∗) ≥
ε} = Θ− {θ : d(θ, θ∗) < ε} is a compact subset of Θ for any ε > 0. As hj(y; θ) is continuous
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in θ for each y, j = 1, ..., p, we conclude that ||H(θ)|| is a continuous function of θ. Therefore,

there exists θ1 ∈ {θ : d(θ, θ∗) ≥ ε} such that

infθ:d(θ,θ∗)≥ε||H(θ)|| = ||H(θ1)||.

As θ∗ is the unique solution of H(θ) = 0, and θ1 6= θ∗, we have ||H(θ1)|| > 0, i.e.,

infθ:d(θ,θ∗)≥ε||H(θ)|| > 0. Furthermore, Hn(θ̂∗n) = 0 gives

infθ:d(θ,θ∗)≥ε||H(θ)|| > 0 = ||Hn(θ̂∗n)||. (10)

By (9) and (10), we conclude, applying Theorem 5.9 of van der Vaart (1998, p.46),

θ̂∗n →p θ
∗ as n→∞.

This theorem characterizes the convergence of the estimator θ̂∗n obtained from estimating

functions that are not necessarily unbiased. The difference θ∗ − θ is the asymptotic bias of

using estimating functions that are not unbiased to perform estimation of θ. In particular, if

h(Y; θ) is unbiased, then θ∗ = θ and θ̂∗n is consistent for θ. If k(.) is continuous, then k(θ̂∗n)

converges to k(θ∗) in probability and the adjusted estimator θ̂n is consistent for θ.

Next we establish the asymptotic normality of the estimator θ̂∗n and hence of θ̂n. Let

An(θ) = n−1

n∑
i=1

(∂/∂θT )h(Yi; θ), A(θ) = Eθ{An(θ)},

Bn(θ) = n−1

n∑
i=1

h(Yi; θ){h(Yi; θ)}T , B(θ) = Eθ{Bn(θ)},

Cn(θ) = {A−1
n (θ)}Bn(θ){A−1

n (θ)}T , and

C(θ) = {A−1(θ)}B(θ){A−1(θ)}T .

Theorem 2: Suppose the conditions in Theorem 1 are satisfied, and hj(y; θ) is a continu-

ously differentiable function of θ for each y, j = 1, ..., p. Assume that A(θ∗) is nonsingular,

then under some regularity conditions on hj and the model F , we have: as n → ∞, (i)
√
n(θ̂∗n − θ∗) →d N{0,C(θ∗)}; (ii) Cn(θ̂∗n) →p C(θ∗), and assuming k(·) defined at (2) is

differentiable,

√
n(θ̂n − θ)→d N

{
0,

(
∂kT (θ∗)

∂θ

)
C(θ∗)

(
∂k(θ∗)

∂θT

)}
. (11)

Proof: For each j = 1, ..., p, applying Lemma 3 of Jennrich (1969) to
∑n

i=1 hj(yi; θ̂
∗
n), we

obtain
n∑
i=1

hj(yi; θ̂
∗
n) =

n∑
i=1

hj(yi; θ
∗) +

∂

∂θT

{
n∑
i=1

hj(yi; θ̄jn)

}
(θ̂∗n − θ∗)

5



where θ̄jn lies on the “segment” joining θ̂∗n and θ∗. Stacking these p expansions together, we

obtain an expression in a matrix form

A∗n(θ̄1n, θ̄2n, ..., θ̄pn)
√
n(θ̂∗n − θ∗) = −n−1/2

n∑
i=1

h(Yi; θ
∗) + n−1/2

n∑
i=1

h(Yi; θ̂
∗
n),

where A∗n(θ̄1n, θ̄2n, ..., θ̄pn) = n−1{
∑n

i=1 ∂h1(Yi; θ̄1n)/∂θT , . . .
∑n

i=1 ∂hp(Yi; θ̄pn)/∂θT}T .

By Hn(θ̂∗n) = 0, we obtain

A∗n(θ̄1n, θ̄2n, ..., θ̄pn)
√
n(θ̂∗n − θ∗) = −n−1/2

n∑
i=1

h(Yi; θ
∗). (12)

As

Eθ{h(Yi; θ
∗)} = H(θ∗) = 0,

and

covθ{h(Yi; θ
∗)} = Eθ[h(Yi; θ

∗){h(Yi; θ
∗)}T ] = B(θ∗),

by the Central Limit Theorem, we conclude

n−1/2

n∑
i=1

h(Yi; θ
∗)→d N{0,B(θ∗)}. (13)

Note that for each j = 1, ..., p, θ̄jn →p θ
∗ as n→∞, therefore,

n−1

n∑
i=1

∂hj(Yi; θ̄jn)/∂θT →p E{∂hj(Yi; θ
∗)/∂θT}, (14)

and hence

A∗n(θ̄1n, θ̄2n, ..., θ̄pn)→p A(θ∗) as n→∞. (15)

Assuming that A(θ∗) is nonsingular, we have that A∗n(θ̄1n, θ̄2n, ..., θ̄pn) is nonsingular for

sufficiently large n (in probability). Therefore, (12) leads to

√
n(θ̂∗n − θ∗) = −{A∗n(θ̄1n, θ̄2n, ..., θ̄pn)}−1n−1/2

n∑
i=1

h(Yi; θ
∗).

By (13) and (15),

√
n(θ̂∗n − θ∗)→d N [0, {A−1(θ∗)}B(θ∗){A−1(θ∗)}T ],

which is conclusion (i). Conclusion (ii) is straightforward as {A∗n(θ̄1n, θ̄2n, ..., θ̄pn)}−1 →p

A−1
n (θ∗) and Bn(θ̂∗n)→p B(θ∗). The asymptotic normality of θ̂n follows from an application

of the delta method.
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The regularity conditions for Theorems 1 and 2 are similar to those outlined in Ch. 5 of

Van der Waart; see in particular the discussion following his Theorems 5.9 and 5.21. The

compactness assumption on Θ is the simplest way to ensure consistency, but may be relaxed

to conditions similar to those discussed in Walker (1969) or Huber (1967). For asymptotic

normality, assumptions on the existence of first and second moments of h and ∂h/∂θ are

needed, as well as an assumption on the model and the estimating equation that ensures

differentiation with respect to θ and expectation can be exchanged.

3 Applications to inference for binary data

In this section we look at several examples related to binary data, where biased estimating

equations arise from ignoring various complexities of the data. We show that the method of

adjusting the estimator based on (4) can be simpler than correcting the bias of the estimating

function and can also lead to insight about the effect of ignoring the complexities.

First we illustrate the method with a somewhat artificial example related to Example 1.

Example 2: complete binary data. Suppose as in Example 1 that Yi = (Yi1, Yi2)T is

a random sample of bivariate binary vectors, i = 1, ..., n with E(Yij) = µ, j = 1, 2, and

corr(Yi1, Yi2) = ρ for i = 1, ..., n, and θ = (µ, ρ)T .

As shown in Example 1 at (5), consistent estimators are available for µ and ρ from a

simple method of moments approach. If we deliberately misspecify estimating functions by

switching the meaning of moments, considering for example

hµ(Yi; θ) = Yi1Yi2 − µ, hρ(Yi; θ) = Yi1 + Yi2 − ρ,

the resulting estimator is

µ̂∗n =

∑n
i=1 Yi1Yi2
n

, ρ̂∗n =

∑n
i=1(Yi1 + Yi2)

n
. (16)

Obviously, θ̂ = (µ̂∗, ρ̂∗)T is not a consistent estimator for θ. Applying the adjustment function

(2) to h(yi; θ):  Eθ(Yi1Yi2)− µ∗

Eθ(Yi1 + Yi2)− ρ∗

 =

 ρµ(1− µ) + µ2 − µ∗

2µ− ρ∗

 = 0,

we obtain

µ =
1

2
ρ∗, ρ =

4µ∗ − ρ∗2

ρ∗(2− ρ∗)
, (17)

which gives the adjusted estimator

µ̂n =

∑n
i=1(Yi1 + Yi2)

2n
, ρ̂n =

4n
∑n

i=1 Yi1Yi2 − {
∑n

i=1(Yi1 + Yi2)}2∑n
i=1(Yi1 + Yi2){2n−

∑n
i=1(Yi1 + Yi2)}

(18)
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which is identical to (5).

We may alternatively consider another set of misspecified functions

hµ(Yi; θ) = Yi1 − µ, hρ(Yi; θ) = Yi1Yi2 − ρ,

which produces

µ̂∗n =

∑n
i=1 Yi1
n

, ρ̂∗n =

∑n
i=1 Yi1Yi2
n

. (19)

Note here that µ̂∗n is a consistent estimator for µ, but ρ̂∗n is not consistent for ρ. We now

apply the adjustment function (2) to h(yi; θ
∗): Eθ(Yi1)− µ∗

Eθ(Yi1Yi2)− ρ∗

 =

 µ− µ∗

ρµ(1− µ) + µ2 − ρ∗

 = 0,

yielding

µ = µ∗, ρ =
ρ∗ − µ∗2

µ∗(1− µ∗)
. (20)

Applying (20) to (19), we obtain an adjusted estimator

µ̂n =

∑n
i=1 Yi1
n

, ρ̂n =
n
∑n

i=1 Yi1Yi2 − (
∑n

i=1 Yi1)2

(
∑n

i=1 Yi1)(n−
∑n

i=1 Yi1)
,

which is consistent for θ, although clearly less efficient than (18).

As in Example 1, suppose now that there is missing data, and Rij records whether or not

Yij is missing, for j = 1, 2 and i = 1, . . . , n. Using these misspecified estimating equations

for the observed data gives

hµ(Yi; θ) = Ri1Yi1 − µ, hρ(Yi; θ) = Ri1Ri2Yi1Yi2 − ρ.

Then the resulting estimator is

µ̂∗n =

∑n
i=1Ri1Ri2Yi1Yi2

n
, ρ̂∗n =

∑n
i=1Ri1Yi1
n

. (21)

Adjusting it as before gives

Eθ(Ri1Yi1) = µ∗, Eθ(Ri1Ri2Yi1Yi2) = ρ∗,

which leads to

µ = {1 + exp(−α0 − α1)}µ∗,

ρ =
{1 + exp(−γ0 − 2γ1)}ρ∗ − {1 + exp(−α0 − α1)}2µ∗2

{1 + exp(−α0 − α1)}µ∗[1− {1 + exp(−α0 − α1)}µ∗]
. (22)
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Combining (22) with (21) gives a consistent estimator for θ.

We now consider extension to a regression setting, assuming Yij is a binary response for

subject i at time point j, j = 1, ...,m, with an associated covariate vector xij, and model

the mean vector as a logistic regression:

logit µij = θTxij, (23)

where µij = E(Yij|xi) with xi = (xTi1, ...,x
T
im)T . The score equations for θ, assuming inde-

pendence of the observations in both i and j, are

n∑
i=1

Ui(θ) =
n∑
i=1

m∑
j=1

xij

{
yij −

exp(θTxij)

1 + exp(θTxij)

}
; (24)

these are also the generalized estimating equations (Liang and Zeger, 1986), under a working

model of independence. Denote by θ̂U the estimator based on (24).

For computing k(θ∗) in settings with missing or misclassified data, discussed below, we

will use the alternative unbiased estimating equation

n∑
i=1

g(yi; θ) =
n∑
i=1

m∑
j=1

xij[yij{1 + exp(θTxij)} − exp(θTxij)], (25)

and denote by θ̂g the estimator based on (25). In the special case that a single covariate

xij = 0 or 1, both θ̂U and θ̂g are given by

exp(θ̂U) = exp(θ̂g) =

∑n
i=1

∑m
j=1 xijyij∑n

i=1

∑m
j=1 xij(1− yij)

,

although if xij = ±1 with equal frequencies, then

exp(θ̂U) =

∑n
i=1

∑m
j=1(1 + xij)yij +

∑n
i=1

∑m
j=1(1− xij)(1− yij)∑n

i=1

∑m
j=1(1 + xij)(1− yij) +

∑n
i=1

∑m
j=1(1− xij)yij

,

whereas

exp(θ̂g) =

∑n
i=1

∑m
j=1(1− xij)(1− yij)∑n

i=1

∑m
j=1(1 + xij)(1− yij)

.

Example 3: binary data with misclassification. Suppose now that we have some

misclassification of the binary responses, so that the observed data is Sij, where

Pr(Sij = 1 | Yij = 0) = p1

Pr(Sij = 0 | Yij = 1) = p0,
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but that we ignore the misclassification error, and use the estimating function (25) based on

Sij:

n∑
i=1

h(si; θ) =
n∑
i=1

m∑
j=1

xij[sij{1 + exp(θTxij)} − exp(θTxij)]. (26)

The linear structure of (26) simplifies the calculation of Eβ{h(si; θ
∗)}:

Eθ{h(Si; θ
∗)} =

m∑
j=1

xij[(1− p0){1 + exp(θ∗Txij)}
exp(θTxij)

1 + exp(θTxij)

+ p1{1 + exp(θ∗Txij)}
1

1 + exp(θTxij)
− exp(θ∗Txij)], (27)

where we have assumed that Pr(Sij = s | Yij = y,xi) = Pr(Sij = s | Yij = y). The solution

of θ as a function of θ∗ obtained by setting (27) to zero defines θ̂n as a function of θ̂∗n, the

root of (26).

For the special case that xij = 0, 1, we get

exp(θ̂∗n) =

∑n
i=1

∑m
j=1 xijsij∑n

i=1

∑m
j=1 xij(1− sij)

and

exp(θ̂n) =
(1− p1) exp(θ̂∗n)− p1

1− p0 − p0 exp(θ̂∗n)
,

which will be different from exp(θ̂∗n) unless p0 = p1 = 0.

Because in this case h(si; θ) has a simple linear structure, we can also construct an

unbiased estimating equation from (26) using (27):

H̃n(θ) = n−1

n∑
i=1

h(si; θ)− Eθ{h(Si; θ)}

= n−1

n∑
i=1

m∑
j=1

xij[{1 + exp(θTxij)}sij − (1− p0) exp(θTxij)− p1]

which leads in the special case that xij = 0, 1 to

exp(θ̃n) =

∑n
i=1

∑m
j=1 xij(p1 − sij)∑n

i=1

∑m
j=1 xij(p0 − 1 + sij)

,

which is identical to exp(θ̂n).

Example 4: missing data. We now assume that there are some missing observations,

and λij = Pr(Rij = 1 | yi,xi), where logit λij = α0 + α1yij. Suppose we use the estimating

equations (25), which are unbiased for complete data, for the observed data:

h(yi; θ) =
m∑
j=1

rijxij[{1 + exp(θTxij)}yij − exp(θTxij)]. (28)

10



∑n
i=1 h(yi; θ̂

∗
n) = 0 defines the estimator β̂∗n. Using calculations similar to those in Example

1 we obtain

Eθ{h(Yi; θ
∗)} =

m∑
j=1

xij

{
exp(α0 + α1)

1 + exp(α0 + α1)

exp(θTxij)

1 + exp(θTxij)
− exp(α0)

1 + exp(α0)

exp(θ∗Txij)

1 + exp(θTxij)

}
.(29)

The naive estimator has the explicit expression, in the special case that xij = 0, 1

exp(θ̂∗n) =

∑n
i=1

∑m
j=1 xijrijyij∑n

i=1

∑m
j=1 xijrij(1− yij)

and the adjusted version leads to

exp(θ̂n) =
1 + exp(α0 + α1)

exp(α1) + exp(α0 + α1)
exp(θ̂∗n)

indicating as in Example 1 attenuation or enhancement of the true effect as α1 is greater

than or less than 0.

Another way to obtain an unbiased estimating equation is to introduce λij as a weight in

(28), leading to the inverse probability weighted generalized estimating equations of Robins

et al. (1995) and Fitzmaurice et al. (1995). These are

g(yi; θ) =
m∑
j=1

1

λij
rijxij[{1 + exp(θTxij)}yij − exp(θTxij)],

and in the case of binary x’s have the solution

exp(θ̃g) =

∑n
i=1

∑m
j=1 xijrijyij exp(α0 + α1yij)/{1 + exp(α0 + α1yij)}∑n

i=1

∑m
j=1 xijrij(1− yij) exp(α0 + α1yij)/{1 + exp(α0 + α1yij)}

which may be compared with the adjusted version

exp(θ̂n) =
1 + exp(α0 + α1)

exp(α1) + exp(α0 + α1)

∑n
i=1

∑m
j=1 xijrijyij∑n

i=1

∑m
j=1 xijrij(1− yij)

.

If we try to obtain an unbiased estimating equation from h(yi; θ) using (1) the resulting

expression involves a quadratic function of exp(θ̃n) which is quite cumbersome.

Example 5: covariate misclassification. Now suppose that we have a single binary

covariate xij, but misclassified, so that we observe wij with

P (wij = 1|xij = 0) = p1 and P (wij = 0|xij = 1) = p0.

We further assume xij = 1 with probability π and 0 with probability 1− π. The estimating

function based on (25) is easier to work with than the GEE version (24), so we assume that

we start with a naive estimating function

h(yi; θ) =
m∑
j=1

wij[{1 + exp(θwij)}yij − exp(θwij)].

11



We then have

Eθ{h(Yi; θ
∗)} = m

{
(1− p0)π

exp(θ)− exp(θ∗)

1 + exp(θ)
+ p1(1− π)

1− exp(θ∗)

2

}
,

which, by (3), leads to

exp(θ∗) =
{2(1− p0)π + p1(1− π)} exp(θ) + p1(1− π)

{2(1− p0)π + p1(1− π)}+ p1(1− π) exp(θ)
. (30)

This relationship reveals that in special situations, such as p0 6= 1 but p1 = 0 or π = 1, we

have θ∗ = θ. In general situations with 0 < p1 ≤ 1 and 0 ≤ π < 1, we have θ∗ ≥ θ if and

only if θ ≤ 0.

The naive estimator is, from solving
∑n

i=1 h(yi; θ) = 0, given by

exp(θ̂∗n) =

∑n
i=1

∑m
j=1 wijyij∑n

i=1

∑m
j=1wij(1− yij)

.

Therefore, the adjusted estimator is

exp(θ̂n) =
2{(1− p0)π + p1(1− π)}

∑n
i=1

∑m
j=1wijyij − p1(1− π)

∑n
i=1

∑m
j=1wij

2{(1− p0)π + p1(1− π)}
∑n

i=1

∑m
j=1wij(1− yij)− p1(1− π)

∑n
i=1

∑m
j=1wij

.

We compare this approach to that of correcting h(·) for its bias, which leads to the estimating

equation

n−1

n∑
i=1

m∑
j=1

wij[{1 + exp(θwij)}yij − exp(θwij)]− (m/2)[p1(1− π){1− exp(θ)}] = 0

and gives the consistent estimator of θ:

exp(θ̃n) =
2
∑n

i=1

∑m
j=1wijyij −mnp1(1− π)

2
∑n

i=1

∑m
j=1wij(1− yij)−mnp1(1− π)

.

Figure 1 shows the asymptotic relative efficiency of θ̂n and θ̃n, for three different choices of

the probabilities of misclassification.

4 Comparison of Estimators

In this section we compare the estimators obtained from the two approaches described in

Section 1: modifying the estimating equation by subtracting the bias, or modifying the point

estimator using the relationship between θ∗ and θ. As shown in Appendix A, in special cases

these two methods may lead to the same estimators; however in general, the two estimators

and their asymptotic variances are different.

12



Figure 1: Asymptotic relative efficiency of θ̂n relative to θ̃n, based on the expressions given in
Theorem 2, presented as a function of θ for three choices of miisclassification probabilities:
(i) p0 = 0.05, p1 = 0.30 (solid), (ii) p0 = 0.05, p1 = 0.30 (dashed), (iii) p0 = p1 = 0.45
(dashed-dotted). The xijs are equal to 0 or 1 with probability 1/2.
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For ease of notation we consider the case that θ is a scalar, which is still instructive.

Assume the subsequent quantities such as inverses and derivariatives all exist. Applying

Taylor series expansions to Hn(θ̂∗) and H̃n(θ̂) leads to

θ̂n = θ − k′(θ∗)Hn(θ∗)

H ′n(θ∗)
+Op(1/n),

and

θ̃n = θ − H̃n(θ)

H̃ ′n(θ)
+Op(1/n).

Now we examine approximations to the denominators H ′n(θ∗) and H̃ ′n(θ) . Let u(θ) be the

13



score function and ∂θh(Y ; θ) denote the derivative of h(Y ; θ) with respect to θ. Then

H ′n(θ∗) = Eθ[H
′
n(θ∗)] +Op(1/

√
n)

= Eθ[∂θ∗h(Y ; θ∗)] +Op(1/
√
n),

and

H̃ ′n(θ) = Eθ[H̃
′
n(θ)] +Op(1/

√
n)

= Eθ[∂θh̃(Y ; θ)] +Op(1/
√
n)

= −Eθ[u(θ)h̃(Y ; θ)] +Op(1/
√
n) by unbiasedness of h̃(Y ; θ)

= −Eθ[u(θ)h(Y ; θ)]− Eθ[u(θ)]Eθ[h(Y ; θ)] +Op(1/
√
n)

= −Eθ[u(θ)h(Y ; θ)] +Op(1/
√
n) by unbiasedness of u(θ),

leading to

θ̂n − θ̃n = −k′(θ∗) Hn(θ∗)

Eθ[∂θ∗h(Y ; θ∗)]
+

H̃n(θ∗)

Eθ[u(θ)h(Y ; θ)]
+Op(1/n). (31)

By the definition of θ∗, we have∫
h(y; θ∗)f(y; k(θ∗))dy = 0. (32)

Differentiating (32) with respect to θ∗, we obtain∫
∂θ∗h(y; θ∗)f(y; θ)dy +

∫
h(y; θ∗)∂θf(y; θ)k′(θ∗)dy = 0,

and hence,

k′(θ∗) = − Eθ[∂θ∗h(Y ; θ∗)]

Eθ[u(θ)h(Y ; θ∗)]
. (33)

Expanding h(y; θ∗) in (32) around θ, we obtain∫
{h(y; θ) + (θ∗ − θ)∂θh(y; θ) + o(θ∗ − θ)}f(y; θ)dy = 0

leading to

H(θ) = −(θ∗ − θ)Eθ[∂θh(Y ; θ)] + o(θ∗ − θ). (34)

Substituting (33) and (34) into (31) yields

θ̂n − θ̃n =
Hn(θ∗)

Eθ[u(θ)h(Y ; θ∗)]
− Hn(θ)−H(θ)

Eθ[u(θ)h(Y ; θ)]
+Op(1/

√
n)

=
Hn(θ∗)

Eθ[u(θ)h(Y ; θ∗)]
− Hn(θ) + (θ∗ − θ)Eθ[∂θh(Y ; θ)] + o(θ∗ − θ)

Eθ[u(θ)h(Y ; θ)]
+Op(1/

√
n)

=

{
Hn(θ∗)

Eθ[u(θ)h(Y ; θ∗)]
− Hn(θ)

Eθ[u(θ)h(Y ; θ)]

}
− (θ∗ − θ) Eθ[∂θh(Y ; θ)]

Eθ[u(θ)h(Y ; θ)]
+ o(θ∗ − θ) +Op(1/

√
n).

14



Further examining the term in braces by Taylor expansion, we have

Hn(θ∗) = Hn(θ) + (θ∗ − θ)H ′n(θ) + o(θ∗ − θ)

and

Eθ[u(θ)h(Y ; θ∗)] =

∫
u(θ)h(y; θ∗)f(y; θ)dy

=

∫
u(θ)h(y; θ)f(y; θ)dy +

∫
u(θ)[∂θ∗h(y; θ∗)|θ∗=θ]f(y; θ)dy(θ∗ − θ) + o(θ∗ − θ)

= Eθ[u(θ)h(Y ; θ)] + (θ∗ − θ)Eθ[u(θ)∂θh(Y ; θ)] + o(θ∗ − θ).

Therefore,

Hn(θ∗)

Eθ[u(θ)h(Y ; θ∗)]
=

Hn(θ)

Eθ[u(θ)h(Y ; θ)]

{
1 + (θ∗ − θ)H

′
n(θ)

Hn(θ)
+ o(θ∗ − θ)

}

·

{
1− (θ∗ − θ)Eθ[u(θ)∂θh(Y ; θ)]

Eθ[u(θ)h(Y ; θ)]
+ o(θ∗ − θ)

}

=
Hn(θ)

Eθ[u(θ)h(Y ; θ)]

{
1 + (θ∗ − θ)

(
H ′n(θ)

Hn(θ)
− Eθ[u(θ)∂θh(Y ; θ)]

Eθ[u(θ)h(Y ; θ)]

)
+ o(θ∗ − θ)

}
.

As a result, we obtain

θ̂n − θ̃n = (θ∗ − θ)

{
H ′n(θ)

Eθ[u(θ)h(Y ; θ)]
− Hn(θ)Eθ[u(θ)∂θh(Y ; θ)]

(Eθ[u(θ)h(Y ; θ)])2
− Eθ[∂θh(Y ; θ)]

Eθ[u(θ)h(Y ; θ)]

}
+o(θ∗ − θ) +Op(1/

√
n). (35)

Equation (35) characterizes the difference between estimators θ̂n and θ̃n obtained from the

two methods; this depends on function h(Y ; θ) and its derivative, the correlations of these

two functions with the score function, and the asymptotic bias θ∗ − θ.
The theory of estimating functions summarized in the introduction gives the result that

under regularity conditions,
√
n(θ̃n − θ) asymptotically follows a normal distribution with

mean zero and variance Γ−1(θ)Σ(θ){Γ−1(θ)}T , where Γ(θ) = Eθ{∂H̃n(θ)/∂θT}, and Σ(θ) =

Eθ{H̃n(θ)H̃T
n (θ)}. Consequently, the asymptotic relative efficiency between estimators θ̃n

and θ̂n can be obtained using Theorem 2. In general, neither estimator will outperform the

other uniformly. Depending on the specification of the h(y; θ) function, one estimator may

lead to smaller asymptotic variance than the other. In Appendix B, we give an example to

illustrate this point.
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5 Discussion

In this paper we investigate issues concerning misspecification of estimating functions and

establish some asymptotic properties. This gives a means for developing consistent estimators

by modifying estimators obtained from convenient estimating functions which may not be

unbiased. This may be particularly useful in understanding the bias induced by missing or

mismeasured data. Starting from a manageable estimating function, we can apply Theorem

1 to obtain a consistent estimator, and Theorem 2 to choose among alternatives.

For incomplete longitudinal data, Rotnitzky and Wypij (1994) provide an algorithm

for determining k(θ∗) when the responses and covariates follow a discrete distribution, and

illustrate this under an assumed model for missing data. This could be used to check if

k(θ∗) is monotone, which is needed for the application of the delta method in Theorem 2.

Their Figure 1 is consistent with the results of our Examples 1 and 5, showing positive or

negative asymptotic bias in the naive estimator. As they point out, their method does not

give a means of constructing a bias adjustment. The current development could also be

used as a convenient tool for indirect likelihood inference, reviewed in Jiang and Turnbull

(2004). The formulation of an indirect likelihood requires an intermediate statistic that has

an asymptotically normal distribution, and our results provide a theoretical basis for this.

One interesting extension of this work concerns partial misspecification of models. It

may be possible to develop a hybrid inference method by combining the development here

with the pairwise likelihood techniques discussed in Cox and Reid (2004). More convenient

and efficient inference procedures may be generated to preserve robustness of estimating

functions and efficiency of likelihood-related formulation.
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Appendix A

Suppose we start with a biased estimating function
∑n

i=1 h(yi; θ) and create an unbiased

estimating function in the usual way as at (1):

H̃n(θ) = n−1

n∑
i=1

h̃(yi; θ) = n−1

n∑
i=1

h(yi; θ)− Eθ{h(Y; θ)}.

Denote by θ̃n the root of H̃n(θ) = 0. We know under regularity conditons on h̃ and the

underlying family of distributions that θ̃n is consistent for θ as n→∞.
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If h(y; θ) = h1(θ)h2(y) + h3(θ), where h1(θ) is a p × p non-singular matrix, and h2(y)

and h3(θ) are p× 1 vectors, then this is identical to the adjustment method outlined at (3)

and (4), as

Eθ{h(Y; θ∗)} = h1(θ∗)Eθ{h2(Y)}+ h3(θ∗)

showing that Eθ{h2(Y)} = −{h1(θ∗)}−1h3(θ∗) and thus that

K(θ̂n) = −{h3(θ̂∗n)}−1h3(θ̂∗n),

where K(θ) = Eθ{h2(Y)}. On the other hand, n−1
∑n

i=1[h2(yi)−Eθ{h2(Yi)} = 0 is solved

by θ̃n, showing that the two estimators are identical, provided K(·) is a vector of monotone

functions.

As an example to show that the methods lead to different estimators in nonlinear

situations, suppose Yi = (Yi1, Yi2) is a binary vector with independent components and

E(Yij) = µ. Let

h(yi;µ) =
µ+ yi2
1 + yi1

− 1;

we have

E{h(Yi;µ)} = 2µ− µ2 − 1,

and hence

H̃n(µ) =
1

n

n∑
i=1

µ+ yi2
1 + yi1

− (2µ− µ2) = 0

has the solutions

µ̃n = (1/2)[2− 1

n

n∑
i=1

1

1 + yi1
±
√
{( 1

n

n∑
i=1

1

1 + yi1
)2 − 4

n

n∑
i=1

yi2
1 + yi1

}],

where detailed examination indicates that for consistency we need to take the positive square

root if µ ≥ 2/3 and otherwise the negative square root. Using the biased estimating equation

we get the preliminary root

µ̂∗n =
n−

∑n
i=1

∑m
j=1 yi2/(1 + yi1)∑n

i=1

∑m
j=1 1/(1 + yi1)

,

and combining this with Eµ{h(Yi;µ
∗)} = (µ∗ + µ)(1− µ/2)− 1 gives

µ̂n = (1/2){2− µ̂∗n ±
√

(µ̂∗2n + 4µ̂∗n − 4)}.

For example if the four pairs (1, 1), (1, 0), (0, 1) and (0, 0) have equal frequencies n/4 in the

sample, then µ̂n is 2/3 or 1/2, whereas µ̃n is 3/4 or 1/2.
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Appendix B

We consider a simple case with independent binary variables Yi1 and Yi2, i = 1, 2, ..., n.

Let µ = E(Yi1) = E(Yi2) be the parameter of interest. Consider an artificial, but instructive

case in which the function h(y;µ) is specified as

h(yi;µ) = yi1g1(µ) + yi2g2(µ) + gc(c)

for some functions gk(·)(k = 1, 2, 3) and a constant c.

This function is not unbiased, as Eθ{h(Y;µ)} = µ(g1(µ) + g2(µ)) + g3(c). Thus µ∗ is the

point satisfying

µ{g1(µ∗) + g2(µ∗)}+ g3(c) = 0. (36)

It is easily seen that (3) is given by

µ = k(µ∗) = − g3(c)

g1(µ∗) + g2(µ∗)
. (37)

To obtain the estimator µ̃n, let

H̃n(µ) = n−1

n∑
i=1

h(yi;µ)− µ{g1(µ) + g2(µ)} − g3(c).

Direct calculations lead to

Γ(µ) = Eµ{
∂H̃n(µ)

∂µ
} = µ{g′1(µ) + g′2(µ)} − {g1(µ) + g2(µ)},

and

Σ(µ) = E{H̃2
n(µ)} = µ(1− µ){g2

1(µ) + g2
2(µ)}.

Therefore, avar(µ̃n) = Γ−2(µ)Σ(µ).

Regarding the estimator µ̂n, direct calculations lead to

A(µ) = Eµ{
∂h(Yi;µ)

∂µ
} = µ{g′1(µ) + g′2(µ)}

and

B(µ) = Eµ{h2(Yi;µ)} = µ{g2
1(µ) + g2

2(µ)}+ g2
3(c) + 2µ2g1(µ)g2(µ) + 2µ{g1(µ) + g2(µ)}g3(c).

Therefore,

avar(µ̂n) =

{
∂k(µ∗)

∂µ∗

}2

A−2(µ∗)B(µ∗).

It is readily seen that by choice of the functions gk(·) and constant c, we can make

avar(µ̂n) be smaller than avar(µ̃n), or vice versa. For example, with g1(t) = t and g2(t) = 1,

then

avar(µ̃n) = µ(1− µ)(1 + µ2)
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and

avar(µ̂n) =
µ5

g2
3(c)(g3(c) + µ)

+
2µ4

g3(c) + µ
− 3µ3(g3(c) + µ)

g2
3(c)

+
µ6

g3(c)(g3(c) + µ)

in combination with (37). Given a value of µ, choosing a function g3(·) and a consistant c

satisfying

(1− µ+ µ2 − µ3)g4
3(c) + (3 + µ− µ2 − µ3 − µ4)g3

3(c)

+(9µ+ µ2 − µ3 − µ4 − µ5)g2
3(c) + (9µ2 − µ3 − µ4)g3(c) + (3µ3 − µ5)

≥ 0

results in avar(µ̂n) ≤ avar(µ̃n). In particular, choosing a non-negative g3(c) leads to a more

efficient estimator µ̂n asymptotically.

References

[1] Cox, D. R. and Reid, N. (2004). A note on pseudolikelihood constructed from marginal

densities. Biometrika, 91, 729-737.

[2] Fitzmaurice, G. M., Molenberghs, G., and Lipsitz, S. R. (1995). Regression models for

longitudinal binary responses with informative drop-outs. Journal of the Royal Statis-

tical Society, Ser. B, 57, 691-704.

[3] Godambe, V. P. (1960). An optimum property of regular maximum likelihood estima-

tion. The Annals of Mathematical Statistics, 31, 1208-1211.

[4] Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard

conditions. In Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics

and Probability, Berkeley: University of California Press, 221-233.

[5] Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares estimators. The

Annals of Mathematical Statistics, 40, 633-643.

[6] Jiang, W., Turnbull, B. W., and Clark, L. C. (1999). Semiparametric regression models

for repeated events with random effects and measurement error. Journal of the American

Statistical Association, 94, 111-124.

[7] Jiang, W. and Turnbull, B. W. (2004). The indirect method: inference based on inter-

mediate statistics - A synthesis and examples. Statistical Science, 19, 239-263.

[8] Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear

models. Biometrika, 73, 13-22.

19



[9] McCullagh, P. and Tibshirani, R. (1990). A simple method for the adjustment of profile

likelihoods. Journal of the Royal Statistical Society. Series B, 52, 325-344.

[10] Robins, J.M., Rotnizky, A. and Zhao, L.P. (1995). Analysis of semiparametric regression

models for repeated outcomes in the presence of missing data. Journal of the American

Statistical Association, 90, 106-121.

[11] Rotnitzky, A. and Wypij, D. (1994). A note on the bias of estimators with missing data.

Biometrics, 50, 1163-1170.

[12] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.

[13] Walker, A. M. (1969). On the asymptotic behaviour of posterior distributions. Journal

of the Royal Statistical Society, Series B, 31, 80-88.

[14] White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica,

50, 1-25.

[15] Yanagimoto, T. and Yamamoto, E. (1991). The role of unbiasedness in estimating equa-

tions. Estimating Functions. Ed. by V. P. Godambe. Oxford University Press, New York.

20


