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Abstract: In a parametric statistical model, a function of the data is said to be

ancillary if its distribution does not depend on the parameters in the model. The

concept of ancillary statistics is one of R. A. Fisher’s fundamental contributions

to statistical inference. Fisher motivated the principle of conditioning on ancillary

statistics by an argument based on relevant subsets, and by a closely related ar-

gument on recovery of information. Conditioning can also be used to reduce the

dimension of the data to that of the parameter of interest, and conditioning on

ancillary statistics ensures that no information about the parameter is lost in this

reduction.

The present review article is an attempt to illustrate various aspects of the

use of ancillarity in statistical inference. Both exact and asymptotic theory are

considered. Without any claim of completeness, we have made a modest attempt

to crystalize many of the basic ideas in the literature.
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1. Introduction

Ancillary statistics were one of R.A. Fisher’s many pioneering contributions
to statistical inference, introduced in Fisher (1925) and further discussed in Fisher
(1934, 1935). Fisher did not provide a formal definition of ancillarity, but fol-
lowing later authors such as Basu (1964), the usual definition is that a statistic
is ancillary if its distribution does not depend on the parameters in the assumed
model. Some authors (e.g., Lehmann and Scholz (1992)) demand in addition
that ancillary statistics should be functions of minimal sufficient statistics, as a
way of narrowing the class of ancillary statistics.

The development of Fisher’s ideas on ancillarity between 1925 and 1935 is
reviewed in Stigler (2001), and the various, somewhat vague, aspects of ancil-
larity used by Fisher are still quite useful. First, although an ancillary statistic
by itself provides no information about the parameter, it may provide a means
of recovering information lost by reducing the data to the maximum likelihood
estimator. To be specific suppose X has pdf fθ(X), and the MLE T ≡ T (X) of
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θ has pdf gθ(T ). We write I(θ) = Eθ{−∂2 log fθ(X)/∂θ2}, the Fisher informa-
tion contained in X and J(θ) = Eθ{−∂2 log gθ(T )/∂θ2}, the Fisher information
contained in T , implicitly assuming any needed regularity conditions to justify
these definitions. It is easy to show that I(θ) ≥ J(θ) with equality if and only if
T is sufficient.

Thus, when the MLE T itself is not sufficient, there is loss of Fisher informa-
tion. This information can be recovered by conditioning on an ancillary statistic
U , in the sense that I(θ) = Eθ{J(θ|U)}, where J(θ|U) is the Fisher information
contained in hθ(T |U), the conditional distribution of T given U :

J(θ|U) = Eθ

[
−

{∂2 log hθ(T |U)
∂θ2

}
| U

]
.

It is assumed in this definition that the pair (T,U) is sufficient, and then U is
referred to as an ancillary complement to T . According to Fisher, the appropriate
measure of information in T is J(θ|U) and not J(θ).

Example 1. Let (Xi, Yi) (i = 1, . . . , n) be i.i.d. with common pdf

fθ(x, y) = exp(−θx − y

θ
)1[x>0,y>0]; θ > 0.

This example is usually referred to as Fisher’s gamma hyperbola (Efron and
Hinkley (1978); Barndorff-Nielsen and Cox (1994); Reid (2003)). Defining T =
(
∑n

i=1 Yi/
∑n

i=1 Xi)1/2, U = (
∑n

i=1 Xi)1/2(
∑n

i=1 Yi)1/2, it is easy to check that (i)
T is the MLE of θ; (ii) U is ancillary; (iii) (T,U) is jointly minimal sufficient for
θ. In this case, I(θ) = 2n/θ2 and J(θ) = (2n/θ2){2n/(2n + 1)}, so that the loss
of information is I(θ)−J(θ) = (2n)/{(2n+1)θ2}. However, according to Fisher,
one should not report the information in T as J(θ), but instead should report
J(θ|U) = {(2n)/θ2}{K1(2U)/K0(2U)}, where K0 and K1 are Bessel functions,
and their ratio recovers on average the loss of information.

In later work on the location model, Fisher (1934) showed that the config-
uration statistic, (X1 − T, . . . ,Xn − T ), where T is an estimator of the location
parameter, is ancillary, and that conditional inference for the location param-
eter is simply obtained from the likelihood function (Cox and Hinkley (1974,
Chap. 4)). The configuration statistic defines in this case a ‘relevant subset’ of
the sample space, and this relevant subset argument was developed in further de-
tail in Fraser (1968, 1979). Cox’s (1958) paper set out the details of the relevant
subset argument most concretely.

Another role for ancillary statistics is to reduce the dimension of the sample
space to that of the parameter space, thus providing a distribution that can pro-
vide direct inference statements for the parameter. While this is closely related
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to the relevant subsets and information recovery aspects, it is subtly different.
The dimension reduction argument focusses more directly on the conditional dis-
tribution that is left, rather than the marginal distribution that is ignored. This
dimension reduction aspect has proved to be extremely useful for asymptotic the-
ory based on the likelihood function, which interestingly was also anticipated by
Fisher (1925), who argued that the higher order derivatives of the log-likelihood
function could often serve as what we would now call approximately ancillary
statistics. Fraser’s (2004) survey of conditional inference emphasizes the dimen-
sion reduction aspect of ancillarity.

Fisher (1935) also invoked ancillarity for the elimination of nuisance param-
eters in the context of the 2× 2 table, although making this notion of ancillarity
precise is even more difficult than the ordinary notion of ancillarity for the full
parameter.

Kalbfleisch (1975, 1982) classified ancillarity as being “experimental” or
“mathematical”. According to his criterion, “the former are ancillary by virtue
of the experimental design”, for example the random sample size regardless of
the chosen parametric model. He contrasts those with “mathematical ancillar-
ies” which often depend on the structure of the assumed parametric model as in
Example 1. Lehmann (1981) and Lehmann and Scholz (1992) showed the con-
nection of ancillarity with other statistical concepts including sufficiency, group
families, completeness, and mixture experiments, in addition to information and
conditionality as mentioned earlier.

In this paper we review these various aspects of ancillarity, largely in the
context of key examples from the literature. The goal is to try to clarify the
various aspects of ancillarity, and to highlight the importance of conditioning in
both exact or approximate inference. In many standard treatments of statisti-
cal inference, the concept of ancillarity is presented as problematic, usually by
means of some examples. However, it seems essential in non-Bayesian inference
to condition on some features of the data, and we hope the examples also clarify
why this is the case.

In Section 2 we discuss the role of conditionality in two classic examples due
to Welch (1939) and Cox (1958) and a relatively new example due to Hill (1990).
These examples illustrate respectively the importance of conditioning. In Section
3 we give three puzzling examples due to Basu (1964), and discuss suggestions of
Barnard and Sprott (1971) and Cox (1971) toward their resolution. In Section 4,
we discuss the role of ancillary statistics in deriving some higher order asymptotic
results related to maximum likelihood estimation and p-values. In particular, we
introduce the p∗-formula of Barndorff-Nielsen (1983), and indicate the role of
approximately ancillary statistics in this formula.

In Section 5, we consider the issue of conditioning with the objective of
elimination of nuisance parameters, and discuss the role of ancillary statistics in
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this context. Some extended definitions of ancillarity are given: in particular, the
notion of S-ancillarity (Sandved (1965); Sverdrup (1966)), P -ancillarity (Bhapkar
(1989, 1991)), and the connection to the theory of estimating functions (Godambe
(1976)). The related concept of Bayesian ancillarity (Severini (1995)) is discussed,
and we give a brief description of Brown’s (1990) ancillarity paradox.

Buehler (1982) proposed properties of ancillary statistics as a means of more
formally assessing the information recovery, and relevant subsets aspects of ancil-
larity, and discussed this through a large collection of examples. The emphasis in
our paper, on the other hand, is an examination of the role of ancillary statistics
statistics in exact and approximate likelihood inference. In some examples the
argument is clearer if the data is first reduced to the minimal sufficient statistic,
and the ancillary taken to be a component of this statistic. This approach is
emphasized in Cox and Hinkley (1974), for example. However in some examples,
such as the location-scale model, it is easier to work with the full data vector,
and then reduce the conditional model by sufficiency if this is available. This is
the approach emphasized in Fraser (2004).

2. The Case for Ancillarity

If there is an emerging consensus about the role of ancillarity in statistical
inference, it stems from the notion that conditioning on ancillary statistics makes
the resulting inference more relevant to the observed data. In this sense ancil-
lary conditioning is a sort of ‘halfway-house’ between Bayesian and frequentist
inference. The most compelling arguments for ancillary conditioning in the lit-
erature come from consideration of simple but highly illustrative examples, and
we review some of them in this section. These examples illustrate the three dif-
ferent, although related, arguments in favor of ancillary conditioning discussed
in the Introduction: (i) ancillary statistics provide relevant subsets; (ii) ancillary
statistics give the right measure of variation; (iii) ancillary statistics provide a
means of dimension reduction.

Example 2. One of the most compelling, if somewhat artificial, example is
Cox’s (1958) example of two measuring instruments, which has been discussed by
many authors. A particularly thorough discussion is given in Berger and Wolpert
(1984, Chap. 2); Cox and Hinkley (1974, Chap. 4) give detailed calculations in
the context of hypothesis testing,; Fraser (2004) gives a discussion in terms of
confidence intervals that makes the case for conditioning even more starkly. The
model is that of observing a random pair (X,U), where X follows a normal
distribution with mean µ and variance σ2

U , and U follows a Bernoulli distribution
with P (U = 1) = 0.5 = P (U = 0). The importance of conditioning on the
observed value of U is emphasized by assuming that σ2

0 is much smaller than σ2
1,
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i.e., the measurement was either taken with a very precise or a very imprecise
measuring instrument, but in either case we know which measuring instrument
was used. Although it is possible to construct a more powerful test of µ = 0
and a confidence interval for µ with shorter expected length by not conditioning
on the observed value of U , it is clear that the resulting unconditional inference
about µ is irrelevant for any particular measurement or set of measurements from
the more accurate instrument. The power of the test and the expected length
of the confidence interval need to be calculated under the joint distribution of
(X,U) for this argument to be correct, and at least in this example it seems clear
that the unconditional evaluation of power and expected length is inappropriate.
Unconditional confidence intervals are typically longer in more precise contexts
and shorter in less precise contexts than the conditional intervals (Fraser and
McDunnogh (1980)).

This is an example of a ‘relevant subsets’ argument; the relevant subset of
the sample space is that determined by the possible values of X and the observed
value of U . It can easily be generalized to a model where the probability that
U = 1 is unknown, but unrelated to µ; to a model with a random sample size; to
a regression setting, where covariates are selected by a random mechanism; and
so on as long as the parameters determining the ancillary statistic (sample size,
or covariates) are completely uninformative about the parameters of interest.

Next we consider an example originally given in Welch (1939), and subse-
quently revisited by many authors, such as Barndorff-Nielsen and Cox (1994),
and most recently Fraser (2004).

Example 3. Suppose X1 and X2 are i.i.d. uniform (θ − 1, θ + 1), θ real. Let
T = (Y1 + Y2)/2 and U = (Y2 − Y1)/2, where Y1 = min(X1, X2) and Y2 =
max(X1, X2). The dimension of the minimal sufficient statistic (T,U) exceeds
that of the parameter. The MLE of θ is any random variable in the interval
(Y2−1, Y1 +1); in particular, T is a MLE of θ. U is ancillary, and the conditional
pdf of T given U is

fθ(T |U) = {2(1 − U)]−11[θ−1+U<T<θ+1−U ](T ). (2.1)

Based on this conditional pdf, a 100(1 − α)% confidence interval for θ is given
by {T − (1−U)(1− α), T + (1−U)(1− α)}. It may be noted also that when U

is close to 1, θ is very precisely determined.

On the other hand, the marginal pdf of T is

fθ(T ) = T − θ + 1 if θ − 1 < T < θ

= θ + 1 − T if θ ≤ T < θ + 1.
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This may lead to absurd inference for θ when U is close to 1. Then θ is essentially
known exactly, but an unconditional confidence region for θ may lead to values
which may be quite different from this exact value.

Welch (1939) argued against conditional inference by producing two different
100(1 − α)% confidence intervals for θ, one which is based on a more powerful
test, and one which has shorter expected length. Explicit expressions for Welch’s
intervals are given in (2.4) and (2.5) of Fraser (2004). Fraser shows, for extreme
values of U , that Welch’s intervals may be either the full parameter space or the
empty set, but the interval based on (2.1) will not have this extreme behavior. In
general the requirements of power or average length are at odds with the require-
ment of conditioning, although as a reviewer has pointed out, conditional tests
may not be less powerful than unconditional tests, in settings where no uniformly
most powerful unconditional test exists (Barnard (1982); Severini (1995)).

The next example provides an empirical Bayes (EB) scenario where con-
ditioning with respect to an ancillary statistic can produce quite a meaningful
answer.

Example 4 (Hill (1990)). Let Xi|θi
ind∼ N(θi, 1) and θi

i.i.d.∼ N(µ, A) (i = 1, . . . , k).
Here A(> 0) is known, but µ(real) is possibly unknown. Suppose, one needs
a confidence interval for one of the θi, say θ1. Writing B = (1 + A)−1, the
posterior distribution of θ1 is N{(1−B)X1 + Bµ, 1−B}. In an EB method, one
estimates µ from the marginal distribution of (X1, . . . , Xk). Since marginally
Xi

i.i.d.∼ N(µ, B−1), X̄ = k−1
∑k

i=1 Xi is a complete sufficient statistic for µ and
the estimated posterior of θ1 is N{(1 − B)X1 + BX̄, 1 − B}. Based on this, the
shortest 100(1−α)% confidence interval for θ1 is (1−B)X1+BX̄±zα/2

√
(1−B),

where zα/2 is the upper 100α% point of the N(0, 1) distribution.

It is clear that the above EB method does not account for the uncertainty
due to estimation of µ. To see how an ancillarity argument can overcome this, we
may note that marginally U = X1 − X̄ is ancillary and U ∼ N(0, (k − 1)/(kB)).
It is easy to check also that θ1 − {(1 − B)X1 + BX̄}|U ∼ N(0, 1 − B + Bk−1).
Thus the shortest 100(1−α)% confidence interval for θ1 based on this conditional
distribution is (1 − B)X1 + BX̄ ± zα/2

√
(1 − B + Bk−1).

Alternatively, if one takes a hierarchical Bayesian (HB) approach where

1. Xi|θ1, . . . , θk, µ
ind∼ N(θi, 1),

2. θ1, . . . , θk|µ
i.i.d.∼ N(µ,A)(A > 0), and

3. µ ∼ uniform(−∞,∞),

it turns out that θ1|X1, . . . , Xn, µ ∼ N((1−B)X1 +Bµ, 1−B) and µ|X1, . . . , Xn

∼ N(X̄, (kB)−1). Together, they imply θ1|X1, . . . , Xn ∼ N{(1 − B)X1 + BX̄,
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1 − B + Bk−1}. Thus the 100(1 − α)% confidence interval for θ1 based on this
hierarchical prior is the same as the one conditioned on the ancillary U . Noting
that Bk−1 = V (Bµ|X1, . . . , Xn), it may be noted that in this case ancillarity
accounts for the uncertainty due to estimation of µ as much as does the HB
procedure. While the above coincidence between the two procedures need not
always be true, conditioning on an ancillary statistic can often correct the prob-
lem faced by a naive EB procedure. Datta et al. (2002) demonstrated this in a
framework slightly more general than that of Hill.

Examples 3 and 4 illustrate the argument that the conditional variance given
the ancillary statistic of the estimator of the parameter of interest is a more ap-
propriate measure of variability than is the unconditional variance. This is similar
to the relevant subsets argument, and in simple cases is nearly as compelling, but
does not seem to be as readily accepted.

The third role of ancillary conditioning, reduction of dimension, is most
clearly useful in the higher order approximations discussed in Section 4, but it
is already apparent in Example 2. There the minimal sufficient statistic is of
dimension 2, and the parameter of interest is of dimension 1: conditioning on
the ancillary statistic provides a 1-dimensional distribution for inference about θ.
Example 2 is a location model, and this reduction in dimension is available in a
general location model by conditioning on the residuals U = (X1− θ̂, · · · , Xn− θ̂)
where θ̂ is the maximum likelihood estimator, although any location-equivariant
estimator will do. Fisher called this ancillary statistic a configuration statistic,
and argued that it also defines a relevant subset of the sample space for inference;
this line of argument was extended and generalized in Fraser’s (1968) structural
inference. Efron and Hinkley (1978) argued for conditioning on the configuration
statistic to get a more appropriate assessment of the variance of the maximum
likelihood estimator, and showed how this could be extended to approximate
ancillarity. These asymptotic arguments are summarized in Section 4, but first
we turn to several classical examples that seem to raise red flags around ancillary
conditioning.

3. Ancillary Puzzles

Often there are problems associated with ancillary statistics. First, situa-
tions may arise when an ancillary U may not exist. Indeed, Pena, Rohatgi and
Szekely (1992) have demonstrated this phenomenon for general discrete models.
In Ghosh (1988, p.2), Basu considered the example where X1, . . . , Xn (n ≥ 2) are
i.i.d. uniform (θ, θ2), θ > 1. The MLE of θ is T = {max(X1, . . . , Xn)}1/2, while
the minimal sufficient statistic is {min(X1, . . . , Xn), max(X1, . . . , Xn)}. Basu
pointed out that, in this example, there does not exist any ancillary complement
U of T . It may be noted that in this example, the dimension of the minimal
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sufficient statistic exceeds that of the parameter. On the other hand, it is shown
in Basu (1964) that in many other situations there may exist multiple ancillary
complements of the MLE T of θ, and it is not at all clear which one to condition
on. Moreover, two statistics U1 and U2 may be individually ancillary, but (U1, U2)
may not jointly be so. Thus, in the case of a controversy as to which one of U1

and U2 should determine the reference set, the dilemma cannot be resolved by
conditioning on (U1, U2) jointly. Basu illustrated this with an example. Stigler
(2001) pointed out that earlier Edgeworth (1893) and Pearson (1896) considered
this example also, though from a somewhat different perspective.

Example 5. Let (
Xi

Yi

)
i.i.d.∼ N

{(
0
0

)
,

(
1 ρ

ρ 1

)}
i = 1, . . . , n, where ρ ∈ (−1, 1) is unknown. We let U1 =

∑n
i=1 X2

i , U2 =∑n
i=1 Y 2

i and W =
∑n

i=1 XiYi. It is easy to recognize both U1 and U2 as an-
cillary, each having the χ2

n distribution, but jointly (U1, U2) is not ancillary as
corr(U1, U2) = ρ2 depends on ρ. Thus, while W/U1 and W/U2 are both unbiased
estimators of ρ (unconditionally or conditionally), V (W/U1|U1) = (1 − ρ2)/U1

and V (W/U2|U2) = (1 − ρ2)/U2. It is tempting to opt for the larger one of U1

and U2 as the ancillary statistic in this example, but then the choice of the an-
cillary statistic becomes entirely data-dependent, which is counter to the usual
frequentist paradigm.

Cox (1971) suggested a way to deal with multiple ancillaries in this problem.
By the identity I(θ) = E{J(θ|U)}, Cox argued that the basic role of conditioning
on an ancillary U is to discriminate between samples with varying degrees of
information. In the presence of multiple ancillaries, choose that U for which
J(θ|U) is most variable, i.e., Vθ{J(θ|U)} is maximum. Unfortunately, in most
instances Vθ{J(θ|U)} is a function of the unknown θ, and there may not be a
unique U which maximizes Vθ{J(θ|U)} for all θ. Moreover, in Example 4, since
Vθ{J(θ|U1)} = Vθ{J(θ|U2)}, the Cox method will fail to distinguish between U1

and U2.
Also, there does not exist any ancillary function of the minimal sufficient

statistic (U1+U2,W ); in particular, U1+U2 is not ancillary. However, as disussed
in Cox and Hinkley (1974), U1 + U2 is approximately ancillary for small ρ. This
can be partially justified by noting that E(U1 + U2) = 2n and V (U1 + U2) =
4n(1 + ρ2). Approximate ancillarity in this example is discussed in Section 4.

The next example due to Basu (1964) is one of multiple ancillaries where
there is no clearcut choice of which one to condition on without invoking further
conditions.
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Example 6. Consider a random variable X assuming values 1, . . . , 6 such that

Pθ(X = j) =

{
j−θ
12 , j = 1, 2, 3;

j+3−θ
12 , j = 4, 5, 6,

where θ ∈ [−1, 1]. Here the MLE of θ is given by T (X), where T (1) = T (2) =
T (3) = −1 and T (4) = T (5) = T (6) = 1. There are six possible ancillary
complements of T given by

X 1 2 3 4 5 6
U1(X) 0 1 2 0 1 2
U2(X) 0 1 2 0 2 1
U3(X) 0 1 2 1 0 2
U4(X) 0 1 2 2 0 1
U5(X) 0 1 2 1 2 0
U6(X) 0 1 2 2 1 0

A natural question is which ancillary complement one chooses under the given
circumstance. Basu left this example with a question mark. However, if one
computes the information content of T based on its conditional distribution given
these six ancillary statistics, then it turns out that for X = 1 or 4, the maximum
information content lies in the conditional distributions given U1 or U4. For
X = 2 or 5, this is for U1 or U6; while for X = 3, 6, this is for U1 or U3.
Thus, considering all three situations, U1 seems to be the most suitable ancillary
statistic. From another point of view (Barnard and Sprott (1971); Cox and
Hinkley (1974)), under the transformation gX = X + 3 (mod 6), so that the
induced transformation on the parameter space is g∗θ = −θ, it turns out that
the only ancillary statistic unaffected by this transformation is U1. Finally, if one
uses Cox’s (1971) criterion, it turns out that Vθ{J(θ|U1)} > Vθ{J(θ|Ui)} for all
i = 2, . . . , 6. From all these considerations, U1 seems to be the most appropriate
ancillary statistic in this example.

Basu’s next example brings out an anomaly which one may encounter in the
use of ancillary statistics.

Example 7. Basu’s third example deals with X ∼ uniform[ θ, θ+1), 0 ≤ θ ≤ ∞.
The sample space is X = [ 0,∞), and the likelihood function is

L(θ) =

{
1, if X − 1 < θ ≤ X;

0, otherwise.

Thus, every point in the interval (X − 1, X] is a MLE of θ. One such choice is
T = [X], the integer part of X. Let φ(X) = X−[X]. Then φ(X) ∼ uniform[0, 1),
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and is ancillary. Since X = [X] + φ(X), {[X], φ(X)} is a one-to-one function of
the minimal sufficient statistic X, so φ(X) is the ancillary complement of [X].
Note that

[X] =

{
[θ], if φ(X) ≥ φ(θ) ⇔ θ ≤ X < [θ] + 1;

[θ + 1] = [θ] + 1, if φ(X) < φ(θ) ⇔ [θ] + 1 ≤ X < θ + 1.

Also, it is easy to check that

Pθ{[X] = [θ]|φ(X)} = 1, if φ(θ) ≤ φ(X);

Pθ{[X] = [θ + 1]|φ(X)} = 1, if φ(θ) > φ(X).

Thus, the conditional distribution of the MLE [X] given φ(X) is degenerate at [θ]
or [θ + 1] depending on whether φ(X) ≥ φ(θ) or φ(X) < φ(θ). This changes the
status of [X] from a random variable to an unknown constant. However, Barnard
and Sprott (1971) did not find any anamoly in this. In their view, the likelihood
is defined in [X] in the ratio 1−φ(X) : φ(X). Thus [X] measures position of the
likelihood, and φ(X) measures its shape in the sense of the proportion into which
[X] divides the likelihood. Thus, holding φ(X) fixed will also result in holding
[X] fixed as well.

Traditionally the definition of an ancillary statistic has been a statistic with
a distribution free of the model parameter, although as we saw in the measuring
instrument example it is natural to say free of the model parameters of interest.
Some writers insist that the ancillary statistic should be a component of the min-
imal sufficient statistic, and others not, but that distinction usually has no effect
on the resulting inference if the ancillary statistic is required to have maximal
dimension: whether one conditions first and then makes the sufficiency reduc-
tion, or gets the sufficient statistic first and then conditions, one is usually led
to the same conditional distribution with a maximal ancillary statistic. However
the definition is perhaps too narrow to capture the roles of the ancillary statistic
outlined in Section 2, and we think this strict emphasis on distribution has led
many readers to conclude that a theory of inference that insists on conditioning
on ancillary statistics is more problematic than it really is. The approximate the-
ory outlined in Section 4 shows that by emphasizing the conditional distribution
after conditioning on an ancillary statistic, rather than the marginal distribution,
leads to a fruitful theory of likelihood based inference.

4. Approximations and Ancillarity

In Section 2 we saw that one role of an ancillary statistic is to give a more
relevant estimate of the information in the observed sample. This is extended
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in the notion of approximate ancillarity, first discussed in Efron and Hinkley
(1978). Assume we have an independent sample X = (X1, . . . , Xn) from a scalar
parameter model f(x; θ) with log-likelihood function `(θ). Efron and Hinkley
(1978) showed that there is an approximately ancillary statistic U such that

V (θ̂ | U) = j−1(θ̂){1 + Op(n−1)},

where j(θ̂) = −`′′(θ̂) is the observed Fisher information. This is the basis for the
often-repeated claim that the observed information is a better estimate of the
variance of the maximum likelihood estimator than the expected information.
They also showed that

√
n

(
j(θ̂)

I(θ̂)
− 1

)
d→ N(0, γ2

θ ), (4.1)

where

γθ =
(ν20ν02 − ν11)3/2

ν
3/2
20

was called the statistical curvature of the model, and

νjk = E


(

∂`

∂θ

)j
{

∂2`

∂θ2
+ E

(
∂`

∂θ

)2
}k

 .

It follows from (4.1) that the statistic

U =
1 − j(θ̂)/I(θ̂)

γθ̂

is approximately ancillary in the sense that
√

nU has a limiting standard nor-
mal distribution; U has come to be known as the Efron-Hinkley ancillary. It is
first-order ancillary, i.e., the normal approximation to the distribution of U has
relative error O(n−1/2). Skovgaard (1986) showed that the relative error is actu-
ally O(n−1), in a moderate deviation neighborhood of an arbitrary fixed point θ0

in the interior of the parameter space; this is called second order local ancillarity.
Local ancillarity was introduced in Cox (1980).

Example 8. In the measuring instruments example of Cox (1958), introduced in
Section 2, assume that using instrument k, X1, . . . , Xn are i.i.d. N(θ, σ2

k) where
σ2

0 and σ2
1 are known and unequal. The data are (X1, U1), . . . , (Xn, Un), where

Xi is the ith measurement and Ui is an indicator that takes the value 1 if the
first instrument is used. The observed and expected Fisher information are,
respectively,

I(θ) = (n/2)(σ−2
0 + σ−2

1 ), j(θ̂) = (n − U.)σ−2
0 + U.σ

−2
1 ,
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where U. =
∑

Ui records the number of times the first measuring instrument is
used. As the maximum likelihood estimate of θ is θ̂ =

∑n
j=1 Xjσ

−2
Uj

/
∑n

j=1 σ−2
Uj

,
we have that

V (θ̂ | U1, . . . , Un) = j−1(θ̂)

exactly in this case, and that this is indeed the appropriate estimator of the
variance.

There are several other approximate ancillary statistics that have been sug-
gested in the literature. Skovgaard (1986) showed that a second order local
ancillary statistic suffices to construct density and distribution function approx-
imations accurate to third order, i.e., with relative error O(n−3/2) in a moderate
deviation region. Barndorff-Nielsen and Cox (1994, Chap. 7.2) discuss an ap-
proximate ancillary statistic based on a likelihood ratio statistic; they call this
a directed likelihood ancillary. Suppose the statistical model forms a curved
exponential family

f(y; θ) = exp{a1(θ)t1(y) + a2(θ)t2(y) − c(θ) − d(y)},

where for simplicity of notation we assume that a1 and a2 are scalar functions of
a scalar parameter θ: these define the curve in the full parameter space where the
pair (a1, a2) is unrestricted. An example is a normal distribution with mean θ and
variance θ2. If we wanted to test the fit of the curved model, relative to the full
model, we could use a likelihood ratio statistic W = 2{`(â1, â2)−`{a1(θ̂), a2(θ̂)}},
where (â1, â2) maximizes the log-likelihood over the unconstrained parameter
space. The statistic W is asymptotically distributed as χ2

1 under the “null”
hypothesis that the curved model is correct, and its signed square root is asymp-
totically normal, hence ancillary to first order. It is also locally ancillary to
second order. Further adjustments to this directed likelihood ancillary can be
made to improve the order of accuracy of this approximation, although this first
step is adequate for use in the p∗ and r∗ approximations described below. Note
that this “hypothesis test” is preliminary to the desired inference for the pa-
rameter θ. The use of ancillary statistics in goodness-of-fit testing of an assumed
model is discussed in Cox and Hinkley (1974, Chap. 2), and this is an asymptotic
extension of that idea.

Example 5 (continued). Cox and Hinkley (1974, p.34) suggest U ′ = U1 + U2 =
Σ(X2

i + Y 2
i ) as an approximate ancillary statistic for this example, as it has

mean 2n and variance 4n(1 + ρ2), so its first moment is free of ρ and its second
moment is approximately so. Wang (1993) suggested a standardized version
(U ′ − 2n)/2

√
(W 2 + n2), which has both mean and variance independent of

ρ. Defining ancillary statistics through constancy of moments is not the same
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as local or approximate ancillarity, although to first order it is the same for
asymptotically normally distributed statistics.

The Efron-Hinkley ancillary statistic for this example can be calculated from
(4.1), but the explicit expression is not very informative. Since its claim to an-
cillarity is that it has mean 0 and variance 1, and is asymptotically normally
distributed, it is likely to be equivalent to Wang’s (1993) modification of U ′.
We can also embed the model in a two-parameter exponential family and com-
pute the directed likelihood ancillary. Either of these ancillary statistics can be
used for higher order appoximations to the distribution of the maximum likeli-
hood estimator, although the detailed calculations are somewhat cumbersome.
Reid (2003) illustrates the construction of Fraser and Reid (1993, 1995) on this
example.

The role of ancillarity in the theory of asymptotic inference is most explicit in
Barndorff-Nielsen’s p∗ approximation to the density of the maximum likelihood
estimator. This approximation is

p∗(θ̂ | u; θ) = c|j(θ̂)|1/2exp{l(θ; θ̂, u) − l(θ̂; θ̂, u)}, (4.2)

where we have assumed that there is a one-to-one transformation from the sample
vector y to the pair (θ̂, u), and this is explicitly indicated in the argument of the
log-likelihood function. The renormalizing constant c = c(θ, u) can be shown to
be equal to (2π)d/2 where d is the dimension of θ. If the underlying model is a
full exponential family, then (4.2) is a version of the saddlepoint approximation
to the distribution of the minimal sufficient statistic, and no ancillary statistic is
needed. The saddlepoint approximation is given in Daniels (1954), and a simple
derivation of (4.2) is given in Durbin (1980).

Another special case is of particular interest in connection with ancillar-
ity: if the underlying model is a transformation family, then (4.2) gives the
exact conditional distribution of θ̂, and U is the maximal invariant on the group
of transformations. This transformation family version of p∗ was derived in
Barndorff-Nielsen (1980), generalizing Fisher’s (1934) result for location fami-
lies. In general for transformation families, the maximal invariant for the group
provides a natural ancillary statistic; in Example 5 above, this argument was
used to choose among ancillary statistics.

We can view the role of U as providing a complementing statistic to θ̂, in
order that the p∗ approximation is defined on a sample space that is of the same
dimension as the parameter space. Using this approximation will lose informa-
tion about θ however, unless U has a distribution free of θ, i.e., is ancillary. Since
p∗ is an approximation to the density of θ̂, it suffices that U be approximately
ancillary. If U is second order ancillary then the p∗ approximation has rela-
tive error O(n−3/2), while if U is just first order ancillary the p∗ approximation
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has relative error O(n−1). Verifying these results requires specification of the
ancillary statistic U ; a good technical reference is Skovgaard (1990).

When θ is a scalar parameter, the p∗ approximation can be re-expressed as
the approximation to the density of the signed likelihood root

r(θ) = sign(θ̂ − θ)[2{l(θ̂) − l(θ)}]1/2,

assuming the transformation from θ̂ to r is one-to-one, although the dependence
of r on θ̂ is suppressed in the notation. Inference about θ is then readily obtained
from the distribution function F (r|U ; θ), for example, the p-value for testing that
θ = θ0 is F (r0(θ0) | U ; θ0). This distribution function can also be approximated
to O(n−3/2), using a technique due to Lugannani and Rice (1980). The resulting
approximation is

F (r|U ; θ) = Φ(r∗){1 + O(n−3/2)}, (4.3)

where r∗ = r+r−1 log(q/r), q = {l;θ̂(θ̂)− l;θ̂(θ)}j
−1/2(θ̂), and l;θ̂ = ∂`(θ; θ̂, U)/∂θ̂

is a sample space derivative with the ancillary statistic U held fixed. A simpler
statistic Q that does not require the determination of an explicit expression for
U , but leads to an r∗ approximation with relative error O(n−3/2), is developed in
Fraser and Reid (1993, 1995). Skovgaard (1996) suggests a statistic Q̃ that also
avoids specification of an ancillary statistic, and leads to an r∗ approximation
with relative error O(n−1); among a number of suggested versions equivalent to
this order Skovgaard’s seems to be the most accurate in examples. The connec-
tion between the three versions of r∗ are further developed in Reid and Fraser
(2008).

Although the notion of approximately ancillary statistics appears to intro-
duce even more possibilities for ancillary statistics, the p∗ and r∗ approximations
provide very accurate approximations to the density and distribution of the max-
imum likelihood estimator; from that point of view the choice of particular ancil-
lary statistic is not crucial. McCullagh (1984) shows that for scalar parameters,
all choices of approximate ancillary lead to the same p∗ approximation to O(n−1).
For implementation of the r∗ approximation (4.3), the approach of Fraser and
Reid (1995) requires only specification of ancillary directions, which can be much
simpler than finding the explicit form of the ancillary statistic: see for example
Brazzale, Davison and Reid (2007, Chap. 8).

5. Elimination of Nuisance Parameters

5.1. Extended definitions of ancillarity

It may be noted that the function of ancillary statistics in the presence of
nuisance parameters is quite different from what was discussed earlier. The main
objective of standard ancillarity is recovery of the loss of information or more
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generally, probability calculations conditional on a relevant subset. However,
in the presence of nuisance parameters, their elimination without any loss of
information is the primary goal.

To illustrate, we begin with a model parameterized by θ = (ψ, λ), where ψ

is the parameter of the interest, and λ is the nuisance parameter. In such cases,
in order to draw inferences regarding the parameter of interest ψ, one approach
is to eliminate the nuisance parameter λ.

A standard approach is the so-called conditional likelihood approach. Sup-
pose the joint density of the minimal sufficient statistic (T,U) is given by

f(T,U ; ψ, λ) = f(T |U,ψ)f(U ;ψ, λ). (5.1)

Then the inference is based on the conditional density f(T |U,ψ) which does not
involve λ.

One possible drawback of a conditional likelihood approach is that the condi-
tioning variable U may contain information about ψ which is lost when it is held
fixed. Hence, it may be appropriate to require that the distribution of U , the
conditioning statistic does not contain any information about ψ in the presence
of λ. In such cases, U is said to be ancillary for ψ in the presence of λ.

The above requirement is met if the marginal density of U does not depend
on λ. This, however, does not happen, in general, as the following example shows.

Example 9. Let X1, . . . , Xn be i.i.d. with common pdf

f(X; ψ, λ) =
Γ(ψ + X)

Γ(X + 1)Γ(ψ)
λX(1 − λ)ψ,

where ψ > 0 and 0 < λ < 1. For fixed ψ, U =
∑n

i=1 Xi is sufficient for λ so that
the conditional distribution of X1, . . . , Xn given U depends only on ψ. However,
U has pdf

f(U ; ψ, λ) =
Γ(nψ + U)

Γ(U + 1)Γ(nψ)
λX(1 − λ)ψ,

which depends on both ψ and λ, and is not ancillary for ψ in the usual sense.
Indeed, the Fisher information contained in U depends on both ψ and λ.

The fact that U is not ancillary in the usual sense has led to the notion
of S-ancillarity (Sandved (1965); Sverdrup (1966)). A statistic U is said to be
S-ancillary for ψ in the presence of λ if the family of pdf’s {f(U ; ψ, λ);λ ∈ Λ}
remains the same for each ψ. More specifically, U is S-ancillary if and only if
there exists a reparameterization of (ψ, λ) into (ψ, φ) such that the marginal
distribution of U depends only on φ. The following example given in Severini
(2000) illustrates this.
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Example 10 (Severini (2000, Example 8.3)). Xi
i.i.d.∼ Poisson{exp(λ + ψZi)},

i = 1, . . . , n. Then writing φ =
∑n

i=1 exp(λ + ψZi), U =
∑n

1 Xi is S-ancillary.
Also, then the joint conditional distribution of the Xi given U is multinomial
(U ; p1, . . . , pn), where pi = {exp(ψZi)}/

∑n
i=1 exp(ψZi).

However, S-ancillary statistics need not always exist. The following simple
example illustrates this.

Example 11 (Severini (2000, Example 8.7)). Let Xi
i.i.d.∼ N(λ + ψZi, 1), i =

1, . . . , n, where we restrict the parameter space to λ > 0. The log-likelihood is
given by l(ψ, λ) = −(n/2)(X̄ −λ−ψZ̄)2, and X̄ is a P -ancillary statistic. To see
that an S-ancillary statistic does not exist, note that for ψ = 0, X̄ ∼ N(λ, 1/n)
so that the mean is positive, while if ψ = −1, X̄ ∼ N(nλ − Z̄, 1/n) so that the
mean of X̄ is any number greater than −Z̄. Thus X̄ cannot be S-ancillary for λ.

5.2. Ancillarity and optimal estimating equations

Godambe (1976, 1980) also considered the concepts of sufficiency and ancil-
larity in the presence of nuisance parameters, and tied these ideas to the theory
of optimal estimating functions. Ferreira and Minder (1981) provided exam-
ples to show how statistics satisfying Godambe’s definition of ancillarity could
still be useful for inference about the parameter of interest. According to Go-
dambe’s formulation, let Y1, . . . , Yn be independent with pdf’s f(Yi|ψ, λi), where
ψ is the parameter of interest, while the λi are the nuisance parameters. Let
g(Yi, ψ) be a function of Yi and ψ, the parameter of interest, which satisfies
E{g(Yi, ψ, λi)} = 0. Then g(Y , ψ) =

∑n
i=1 g(Yi, ψ) is called an unbiased esti-

mating function, where Y = (Y1, . . . , Yn)T .
Godambe (1976) defined an optimal unbiased estimating function as the

minimizer of E{g2(Y |ψ)/E{∂g(Y , ψ)/∂ψ)}2}. Earlier (Godambe (1960)), he
showed that that without any nuisance parameters, the score function was the
optimal unbiased estimating function. In the presence of nuisance parameters,
he showed that if the joint density f(Y |ψ, λ1, . . . , λn) factors as

f(Y |ψ, λ1, . . . , λn) = f(Y |U,ψ)f(U |ψ, λ1, . . . , λn),

where U (possibly vector-valued) is a complete sufficient statistic for the nuisance
parameter vector (λ1, . . . , λn), then the conditional score function ∂logf(Y |U,ψ)
/∂ψ is the optimal unbiased estimating function. He also showed that the in-
formation contained in the conditional distribution of Y given U is the same as
that contained in its unconditional distribution.
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In Example 9, U =
∑n

i=1 Yi is a complete sufficient statistic for the nuisance
parameter λ, and so the conditional score function based on the conditional pdf

f(Y |ψ) =
n∏

i=1

(
ψ + Xi − 1

Xi

)/(
nψ + U − 1

U

)
is the optimal unbiased estimating function.

The above optimality of the conditional score function led to the more general
notion of P -ancillarity (partial ancillarity) due to Bhapkar (1989, 1991). Here
ancillarity in the presence of a nuisance parameter is based on the notion of
partial information for ψ. In order to define partial information, we partition
the information matrix for (ψ, λ) into submatrices according to the partition of
the parameter. Then the partial information for ψ is given by Iψψ.λ = Iψψ −
IψλI−1

λλ Iλψ. This is due to the fact that Iψψ.λ is the information content in the
conditional distribution of T given U . We say that U is partial ancillary (P -
ancillary) for ψ is Iψψ.λ = 0.
Example 10 (Continued). In this example

I(ψ, λ) =
(
{
∑

Zj exp(λ + ψZj)}2/
∑

exp(λ + ψZj)
∑

Zjexp(λ + ψZj)∑
Zjexp(λ + ψZj)

∑
exp(λ + ψZj)

)
.

This leads immediately to Iψψ.λ = 0, i.e., the S-ancillary U is also P -ancillary.
In general, S-ancillarity need not not be the same as P -ancillarity. For in-

stance, in Example 7, U is P -ancillary but not S-ancillary. Also, (Severini (2000,
pp.282-285)) has produced a Gamma distribution example where the condition-
ing variable U is neither S-ancillary nor P -ancillary.

5.3. Bayesian ancillarity

As noted in Sections 5.1 and 5.2, S-ancillarity or P -ancillarity of a statistic
U does not imply that the distribution of U does not depend on ψ, and depends
only on λ. A natural question is whether one can find an alternative definition
of ancillarity that ensures that the marginal distribution of U does not depend
on ψ and depends only on λ.

To this end, Severini (1995) proposed the notion of Bayesian ancillarity. We
observe as a consequence of his definition that, by introducing a suitable prior,
the marginal distribution of U will indeed not depend on ψ. The details are
described below.

Severini defines a statistic U to be Bayes ancillary if with respect to some
prior distribution, the posterior distribution of ψ based on the conditional dis-
tribution T given U is the same as the posterior distribution of ψ based on the
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joint distribution of (T,U). In what follows, we use p(·|·) as a generic symbol for
a conditional pdf, and p(·) as a generic symbol for a marginal pdf.

First with no nuisance parameter, U is Bayes ancillary if

p(T,U |ψ)p(ψ)∫
p(T,U |ψ)p(ψ)dψ

=
p(T |U,ψ)p(ψ)∫
p(T |U,ψ)p(ψ)dψ

.

Writing p(T,U |ψ) = p(T |U,ψ)p(U |ψ), the above simplifies to

p(U |ψ) =
∫

p(T,U |ψ)p(ψ)dψ∫
p(T |U,ψ)p(ψ)dψ

,

that is, the marginal of U does not depend on ψ. So, U is ancillary in the usual
sense.

In the presence of a nuisance parameter λ, suppose (T,U) is minimal suffi-
cient for (ψ, λ), and assume as before that p(T,U |ψ, λ) = p(T |U,ψ)p(U |ψ, λ).

Once again, invoking the definition of Bayesian ancillarity, U is Bayesian
ancillary if ∫

p(T,U |ψ, λ)p(λ|ψ)p(ψ)dλ∫ ∫
p(T,U |ψ, λ)p(λ|ψ)p(ψ)dλdψ

=
p(T |U,ψ)p(ψ)∫
p(T |U,ψ)p(ψ)dψ

.

Since p(T,U |ψ, λ) = p(T |U,ψ)p(U |ψ, λ), the above simplifies to∫
p(U |ψ, λ)p(λ|ψ)dλ =

∫ ∫
p(T |U,ψ)p(U |ψ, λ)p(λ|ψ)p(ψ)dλdψ∫

p(T |U,ψ)p(ψ)dψ
.

Equivalently, p(U |ψ) =
∫

p(T |U,ψ) p(U |ψ) p(ψ) dψ/
∫

p(T |U,ψ) p(ψ) dψ. Once
again, the marginal pdf of U given ψ does not involve ψ, and U is ancillary in the
usual sense. In Example 5, if π(λ|ψ) ∝ λ−1(1−λ)−1, then

∫
p(U |ψ, λ)p(λ|ψ)dλ =

Γ(U)/Γ(U +1) = U−1 which shows that U is Bayes ancillary with respect to this
prior.

5.4. Approximate ancillarity in the presence of nuisance parameters

The definition of ordinary ancillarity in the presence of nuisance parameters
is not at all straightforward, as we have seen in the previous subsections. While
it is possible to formalize the notion of approximate ancillarity in the nuisance
parameter setting, as is done for S-ancillarity in Severini (1993), the development
quickly gets very technical. However, it is possible to extend the asymptotic
approximations outlined in Section 4 to the nuisance parameter setting, using an
approximate version of (4.3).

We start with the p∗ approximation (4.2) for the distribution of the full max-
imum likelihood estimator θ̂, conditional on an approximate ancillary statistic



ANCILLARY STATISTICS 1327

U . The goal is to find an approximation that can be used for inference about the
parameter of interest ψ, without specifying a value for the nuisance parameter λ.
One way to approach this is to consider a p∗ approximation for inference about
λ, in a model where ψ is held fixed. An approximate ancillary statistic is needed
for constructing this, and the resulting approximation is the conditional density
of λ̂ψ, given the original ancillary statistic U and a further ancillary statistic Uψ,
say. Thus we have the partition

p∗(θ̂ | U ; θ) = p(Uψ | U ; θ)p∗(λ̂ψ | Uψ, U ; θ),

where Uψ is the approximate ancillary statistic needed for the p∗ approxima-
tion to the conditional density of λ̂ψ, and p(Uψ | U ; θ) is the ratio of the two
p∗ approximations. Barndorff-Nielsen (1986) showed that Uψ can be trans-
formed to a quantity r∗ψ that has, to O(n−3/2) a standard normal distribu-
tion. Further a constructive expression for r∗ψ is available that combines rψ =
sign(ψ̂ − ψ){2{lp(ψ̂) − lp(ψ)}}1/2, from the profile log likelihood, with a related
quantity qψ as

r∗ψ = rψ +
1
rψ

log
(

qψ

rψ

)
.

This leads directly to approximate inference for ψ based on Φ(r∗ψ), which has
relative error O(n−3/2) conditionally on U and unconditionally. The construc-
tion of r∗ψ requires differentiation of the log-likelihood function on this sample
space, with U fixed. Fraser and Reid (1995) show how to compute these deriva-
tives without first obtaining an explicit expression for the approximate ancillary
statistic U ; see also (Severini (2000, Chap. 7.5))and Brazzale, Davison and Reid
(2007, Chap. 2)). It is possible to avoid the ancillary statistic entirely by a
method suggested in Skovgaard (1996), although the resulting approximation
has relative error O(n−1) instead of O(n−3/2).

Example 12. Suppose X1, . . . , Xn are i.i.d. from the N(µ, σ2) distribution, with
µ = ψ the parameter of interest. The expressions for r and q are given by

r = sign (q)
[
n log

{
1 +

n(µ̂ − µ2)
σ̂2

}]1/2

,

q =
n(µ̂ − µ)/σ̂

1 + {n(µ̂ − µ)2}/σ̂2
,

which are simple functions of the t-statistic t =
√

n(µ̂−µ)/{σ̂/(n− 1)}. Expres-
sions for r and q for general location-scale models are given in Barndorff-Nielsen
and Cox (1994, Ex. 6.20). The detailed construction of Uψ mentioned above is
not needed for this example (Barndorff-Nielsen and Cox (1994, Ex. 6.11)). The
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following very simple series expansion for r∗ was derived by Sartori (2003) and
Iglesias-Gonzalez (2007):

r∗ = t − (t + t3)/(4n) + O(n−2). (5.2)

Expansion (5.2) is still valid when µ is replaced by Xβ, with β a vector of p

unknown parameters.

This model can be generalized in a number of directions: expressions for r

and q in general regression-scale models can be obtained explicitly from sum-
mary formulae for q given in, for example, Brazzale, Davison and Reid (2007,
Chap. 6), and formulae for nonlinear regression are given in Fraser, Wong and Wu
(1999). The essential point is that the expressions derived, using notions of ap-
proximate ancillarity, provide a means of calculating a pivotal quantity, r∗, which
like the t-statistic in normal theory models, provides inference for the parame-
ter of interest with explicit specification of the nuisance parameter. The normal
approximation holds both conditionally on the approximate ancillary statistic
and unconditionally. From the point of view of the asymptotic theory, the con-
ditional distribution given an ancillary statistic is more useful than the precise
construction and definition of ancillary statistics.

5.5. Brown’s ancillarity paradox

Brown (1990) introduced a very interesting ancillarity paradox (essentially
an admissibility paradox) in the context of multiple linear regression. His main
theme was to show via (in)admissibility results that procedures which are admis-
sible conditional on some ancillarity statistics may unconditionally fail to become
so.

We begin with the following simple example of Brown.

Example 13. Let X ∼ N(µ,Σ), Σ known positive definite. Let U ∈ Rp with
||U || > 0. Let θ = UT µ. The usual estimator of θ is UT X. Under squared error
loss, Cohen (1966) has shown that UT X is an admissible estimator of UT µ for
fixed U . However, if U is random. writing Σ = E(UUT ), and assuming it to
be positive definite, Brown showed that UT X is dominated by UT δ(X), under
squared error loss, where

δ(X) = X − ρ

XTΣ−1Ω−1Σ−1X
Ω−1Σ−1X

0 < ρ < 2(p − 2), p ≥ 3.

Brown established a similar phenomenon in a multiple regression problem.



ANCILLARY STATISTICS 1329

Example 14. Let X ∼ Np(α1p+Zβ, σ2Ip), where Z (p×p) is the design matrix
and β (k×1) regression vector, 1p is the p-component vector of 1’s, and Ip is the
identity matrix of order p. We assume that p > k+1, and Z is a full rank matrix.
The objective is to estimate α under the squared error loss L(α, a) = (a − α)2,
a ∈ R1.

Let X̄ = p−11T
p X, Z̄ = p−11T

p Z, and S = (Z−1pZ̄
T )T (Z−1pZ̄

T ). Here X̄

is a scalar, Z̄
T is a row vector of dimension k and S is a k × k matrix, positive

definite with probability 1. The usual estimator α̂ = X̄ − Z̄
T
β̂, where β̂ is the

least squares estimator β is admissible under square error loss. However, if it is
assumed that k-dimensional components of Z are i.i.d. N(0, σ2Ik), then α̂ ceases
to be an admissible estimator of α under squared error loss.

What Brown’s examples demonstrate is that conditional inference could po-
tentially be in conflict with unconditional inference. However, it appears that
there are no fundamental or conceptual difficulties associated with this conclu-
sion. This was brought out by several discussants of his paper. Another interest-
ing example of ancillarity paradox in the context of finite population sampling
appears in Godambe (1982).

6. Conclusion

The topic of ancillarity continues to intrigue, at least in part because any
satisfactory frequentist theory of inference must incorporate conditioning, but a
wholly Bayesian approach that automatically conditions on the data raises other
problems, including the meaning of, and choice of, prior probabilities. In this
paper we have surveyed, through examples, various aspects of ancillarity and
their relation to the theory of inference.
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