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1 Introduction

The result established in Birnbaum (1962) that, if one accepts the frequentist
principles of su¢ ciency (S) and conditionality (C), then one must accept the
likelihood principle (L), has been an issue in the foundations of statistics for
50 years. Many statisticians and philosophers of science accept Birnbaum�s
theorem as a logical fact because the proof is simple and, if they follow a pure
likelihood or Bayesian prescription for inference, it doesn�t violate the way
they think statistical analyses should be conducted. Many frequentist sta-
tisticians reject the result basically because they don�t like the consequence
that frequentist evaluations of statistical methodologies are irrelevant.

In the end, an acceptable theory of inference has to be based on sound
logic with no appeals to ex cathedra principles. Any principles used as part of
forming such a theory have to have strong justi�cations and produce results
that are free of paradoxes and contradictions. For example, the principle of
conditional probability, which says we replace P (A); as the measure of belief
that event A is true, by P (A jC) after being told that event C has occurred,
seems like a basic principle of inference that, with careful application, is
sound.

Does the likelihood principle carry the same weight in a theory of in-
ference as the principle of conditional probability? We don�t think so and
we will later argue that a somewhat weakened version is really just a conse-
quence of the principle of conditional probability. Given that such principles
can have a signi�cant in�uence on what we view as correct statistical reason-
ing, it is important to examine the justi�cations for the likelihood principle,
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and Birnbaum�s theorem is commonly cited as such, to see if these are cor-
rect.

Another principle cited in Mayo�s paper is the principle of frequentism.
So what is the justi�cation for this principle? Generally, this seems to be
based on the belief that it typically produces sensible statistical methods
although, as we will subsequently discuss, the story seems incomplete and
unclear. If the principle of frequentism is correct, we need to have a good
argument for it and a much more complete development of the theory.

The relevance of frequentism to Mayo�s paper lies in the author�s posi-
tion that Birnbaum�s argument is basically a violation of the principle. An
argument is provided for why the joint application of S and C used in Birn-
baum�s proof constitute such a violation. I accept Mayo�s reasoning. In fact,
I think it is somewhat similar to the argument put forward in Evans, Fraser
and Monette (1986) that the applications of S and C in the proof are in-
correct because S discards as irrelevant precisely the information used by C
to form the conditional model. So the justi�cations for S and C contradict
one another in the proof and this doesn�t seem right. This contradiction
is avoided if one adopts the principle put forward in Durbin (1970), that
we should restrict to ancillaries that are functions of a minimal su¢ cient
statistic, and then Birnbaum�s proof fails.

As we will discuss in Section 3, however, the issue in Birnbaum�s argu-
ment is not really with S and C together, but rather with C itself and with
what is actually proved. A very broad hint that this is the case is provided in
Evans, Fraser and Monette (1986) where, using the same style of argument
as Birnbaum, it is �proved�that accepting C alone is equivalent to accepting
L: So Durbin�s point doesn�t save the day even if we accept it. Actually, I
don�t think the arguments in Mayo�s paper, or in Evans, Fraser and Mon-
ette (1986), completely dispense with Birnbaum�s theorem either. They just
reinforce the unsettling feeling that something is wrong somewhere.

Section 3 contains an outline of Evans (2013) that, for me at least, de-
�nitively settles the issue of what is wrong with Birnbaum�s result and does
this mathematically. As will be apparent from Section 2, however, it is clear
that I believe that a proper prior is a necessary part of formally correct sta-
tistical reasoning. So why would a Bayesian want to invalidate Birnbaum�s
result? This is because the result, as usually stated, is not logically correct.
Any valid theory has to have sound, logical foundations and so we don�t
want any faulty reasoning being used to justify that theory. In fact, Birn-
baum�s result even misleads as we�ve heard it said that model checking and
checking for prior-data con�ict violate the likelihood principle and so should
not be carried out. Both of these activities are a necessary part of a statis-
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tical analysis. For this is how we deal, at least in part, with the subjectivity
inherent in a statistical analysis due to the choices made by a statistician.
This point, at least with respect to model checking, is also made in Mayo�s
paper and I think it is an excellent one.

For proper Bayesians, a form of the likelihood principle is a consequence
of the principle of conditional probability, a far more important principle.
Applying the principle of conditional probability to the joint probability
model for the model parameter and data after observing the data, we have
that probability statements about the model parameter depend on the sam-
pling model and data only through the likelihood (note the emphasis). Of
course, the likelihood map is minimal su¢ cient so there is nothing surprising
in this.

2 Birnbaum and Evidence

There is an aspect of Birnbaum�s work in this area that is particularly
noteworthy. This is his emphasis on trying to characterize statistical ev-
idence concerning the true value of the model parameter as expressed by
the function Ev: Consider the pairs (M;x); where M = ff� : � 2 �g is a
set of probability distributions indexed by parameter � 2 � and x is ob-
served data coming from a distribution in M: Then Birnbaum (1962) writes
Ev(M1; x1) = Ev(M2; x2) to mean that the evidence in (M1; x1) is the same
as the evidence in (M2; x2) whenever certain conditions are satis�ed: We
require here that M1 and M2 have the same parameter space but this can
be weakened to include models with parameter spaces that are bijectively
equivalent.

The principles S;C and L are considered as possible partial charac-
terizations of statistical evidence. For example, if (M1; x1) and (M2; x2)
are related via S; then Birnbaum says that, for frequentist statisticians,
Ev(M1; x1) = Ev(M2; x2) and similarly for C: Birnbaum is careful to say
that Ev does not characterize what statistical evidence is, it is a kind of
�equivalence relation�(see Section 3).

In essence Birnbaum brings us to the heart of the matter in statistical
inference. What is statistical evidence or more appropriately, how do we
measure it? It seems collectively we talk about it, but we rarely get down
to details and really spell out how we are supposed to handle this concept.
Perhaps the closest to doing this is the pure likelihood theory, as discussed
for example in Royall (1997), but this is only a de�nition of relative evidence
when comparing two values of the full model parameter. For marginal pa-
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rameters, this approach uses the pro�le likelihood as the only general way
to compare the evidence for di¤erent values and this is unsatisfactory from
many points of view. For example, a pro�le likelihood function is not gen-
erally a likelihood function.

For a frequentist theory of statistical inference, as opposed to a theory
of statistical decision, it seems essential that a general method for measur-
ing statistical evidence be provided that can be applied in any particular
problem. The p-value is often used as a frequentist measure of evidence
against a hypothesis, but, for a variety of reasons, it does not seem to be
appropriate. For example, we need a measure that can also provide evidence
for something being true and not just evidence against, given that we have
assumed that the true distribution is in M .

If we add a proper prior to the ingredients, then it seems we can come up
with sensible measures of evidence. For evidence, as expressed by observed
data in statistical problems, is what causes beliefs to change and so we
can measure evidence by measuring change in belief. For example, if we
are interested in the truth of the event A; and this has prior probability
P (A) > 0; then after observing C; the principle of conditional probability
leads to the posterior probability P (A jC) as the appropriate expression of
beliefs about A: Accordingly, we measure evidence by the change in belief
from P (A) to P (A jC): A simple principle of evidence says that we have
evidence for the truth of A when P (A jC) > P (A); evidence against the
truth of A when P (A jC) < P (A) and no evidence one way or the other when
P (A jC) = P (A): This principle is common in discussions about evidence
in the philosophy of science and it seems obviously correct.

Of course, we also want to know how much evidence we have and this
has lead to a variety of di¤erent measures based on (P (A); P (A jC)): The
Bayes factor BF (A jC) = P (Ac)P (A jC)P (Ac)=P (A)P (Ac jC) is one such
measure, as BF (A jC) > 1 if and only if P (A jC) > P (A) and bigger values
mean more evidence in favor of A being true. A central question associated
with this, and other measures of evidence, is how to calibrate its values as
in when is BF (A jC) big and when is it small. Actually, we prefer mea-
suring evidence via the relative belief ratio RB(A jC) = P (A jC)=P (A); as
the associated mathematics and the calibration of its values are both sim-
pler. The generalization to continuous contexts is e¤ected by taking limits
and then both measures agree. A full theory of inference, both estimation
and hypothesis assessment, can be built based on this measure of evidence
together with a very natural calibration. This is discussed in Baskurt and
Evans (2013). Of course, many will not like this because it involves proper
priors, and so is subjective and supposedly not scienti�c. Alternatively, some
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may complain that priors are somehow hard to come up with.
In reality all of statistics, excepting the data when it is properly collected,

is subjective. We choose models and we choose priors. What is important
is that any choice we make, as part of a statistical analysis, be checkable
against the objective data to ensure the choice at least make sense. We
check the model by asking whether or not the data is surprising for each
distribution in the model, and there are many well-known procedures for
doing this. Perhaps not so familiar is that we can also check a proper prior
by asking whether or not the true value is in a region of relatively low prior
probability. Procedures for doing this consistently are developed in Evans
and Moshonov (2006) and Evans and Jang (2011a). In fact, there are even
logical approaches to modifying priors when prior-data con�ict is found, as
discussed in Evans and Jang (2011b). Moreover, with a suitable de�nition
of evidence, we can measure a priori whether or not a prior is inducing bias
into a problem, see Baskurt and Evans (2013). So subjectivity is not really
the issue. We do our best to assess and control its e¤ects, and maybe that
is part of the role of statistics in science, but in the end it is an unavoidable
aspect of any statistical investigation.

It is undoubtedly true that it is possible to write down complicated
models for which it is extremely di¢ cult, if not impossible, to prescribe an
elicitation procedure in an application that leads to a sensible choice of a
prior. But what does this say about our choice of model? It seems that
we do not understand the e¤ects of parameters in the model on the mea-
surements we are taking su¢ ciently well to develop such a procedure. That
is certainly possible, and perhaps even common, but it doesn�t speak well
for the modeling process and it shouldn�t be held up as a criticism of what
should be the gold standard for inference. An analogous situation arises
with data collection where we know the gold standard is random sampling
from the population(s) to which our inferences are to apply and, when we
are interested in relationships among variables, controlled allocation of the
values of predictors to sampled units. The fact that this is rarely, if ever,
achieved doesn�t cause us to throw out the baby with the dirty bath water.
Gold standards serve as guides that we strive to attain and analyses that
don�t just need to be suitably quali�ed.

Our main point in this section is that the problem of measuring statistical
evidence is the central issue in developing a theory of statistical inference. It
seems that Birnbaum realized this and was searching for a way to accomplish
this goal when he came upon what appeared to be a remarkable result.
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3 What�s Wrong with Birnbaum�s Result?

Perhaps everybody who has read the proof of Birnbaum�s theorem is sur-
prised at its simplicity. In fact, this is one of the reasons it is so convincing
as there does not appear to be a logical �aw in the proof. As Mayo has
noted, however, there are reasons to be doubtful of, if not even reject, the
result as being valid within the domain of any sensible theory of statistical
inference. Still suspicions linger as the formulation seems so simple.

As we will now explain, the result proved is not really the result claimed.
If we want to treat Birnbaum�s theorem and its proof as a piece of mathe-
matics, then we have to be precise about the ingredients going into it. It is
the imprecision in Birnbaum�s formulation that leads to a faulty impression
of exactly what is proved. This is more carefully explained in Evans (2013)
but we can give a broad outline here.

Suppose we have a set D: A relation R on D is any subset R � D �D:
Meaningful relations express something and (d1; d2) 2 R means that d1 and
d2 share some relevant property. Let I denote the set of all model-data pairs
(M;x): So, for example, we can consider S as a relation on I by saying the
pair ((M1; x1); (M2; x2)) 2 S � I � I whenever (M1; x1) and (M2; x2) have
equivalent minimal su¢ cient statistics. Similarly, C and L are relations on
I:

An equivalence relation R on D is a relation that is re�exive: (d; d) 2 R
for all d 2 D; symmetric: (d1; d2) 2 R implies (d2; d1) 2 R and transi-
tive: (d1; d2); (d2; d3) 2 R implies (d1; d3) 2 R: It is reasonable to say that,
whatever property is characterized by relation R; when R is an equivalence
relation, then (d1; d2) 2 R means that d1 and d2 possess the property to the
same degree. It is easy to prove that S and L are equivalence relations but
C and S [ C are not equivalence relations, see Evans (2013).

Associated with an arbitrary relation R on D is the smallest equivalence
relation on D containing R; which we will denote by �R: Clearly, �R is the
intersection of all equivalence relations containing R. But �R can also be
characterized in another way that is key to Birnbaum�s proof.

Lemma If R is a re�exive relation on D; then �R = f(x; y) : 9n; x1; : : : ; xn 2
D with x = x1; y = xn and (xi; xi+1) 2 R or (xi+1; xi) 2 Rg:
Note that S and C are both re�exive and thus S [ C is re�exive.

In Birnbaum�s proof, he starts with ((M1; x1); (M2; x2)) 2 L; namely,
these pairs have proportional likelihoods. Birnbaum constructs the mixture
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model (Birnbaumization) M� and then argues that

((M1; x1); (M
�; (1; x1))) 2 C;

((M�; (1; x1)); (M
�; (2; x2))) 2 S;

((M�; (2; x2)); (M2; x2)) 2 C:

Since C � S [C and S � S [C; by the Lemma, this proves that L � S [ C
and this is all that Birnbaum�s argument establishes. Since S [ C � L and
L is an equivalence relation, we also have L = S [ C: As shown in Evans
(2013), it is also true that S [C is properly contained in L, so there is some
content to the proof. In prose, Birnbaum�s proof establishes the following: if
we accept S; and we accept C; and we accept all the equivalences generated
by these principles jointly, then we accept L: Certainly accepting S and C
is not equivalent to accepting L since S [ C is a proper subset of L: We
need the additional hypothesis and there doesn�t appear to be any good
reason why we should accept this as part of a theory of statistical inference.
It is easy to construct relations R where �R is meaningless. So we have to
justify the additional pairs we add to a relation when completing it to be
an equivalence relation.

It is interesting to note that the argument supposedly establishing the
equivalence of C and L in Evans, Fraser and Monette (1986), also proceeds
in the same way using the method of the Lemma. Since C is properly
contained in L; this proof establishes that �C = L: So in fact, S is irrelevant
in Birnbaum�s proof. The problem with the principles S and C; as partial
characterizations of statistical evidence, lies with C and the fact that it is
not an equivalence relation. That C is not an equivalence relation is another
way of expressing the well-known fact that, in general, a unique maximal
ancillary doesn�t exist.

The result �C = L does have some content. To be a valid characterization
of evidence in the context of I; we will have to modify C so that it is an
equivalence relation. The smallest equivalence relation containing C is L
and this is unappealing, at least to frequentists, as it implies that repeated
sampling properties are irrelevant for inference. Another natural candidate
for a resolution is the largest equivalence relation contained in C that is
compatible with all the equivalence relations based on maximal ancillaries.
This is given by the equivalence relation based on the laminal ancillary. From
Basu (1959), ancillary statistic a is a laminal ancillary if it is a function of
every maximal ancillary and any other ancillary with this property is a
function of a: The laminal ancillary is essentially unique. It is unclear how
appealing this resolution would be to frequentists, but there don�t seem to
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be any other natural candidates.
Many authors, including Mayo, refer to the weak conditionality princi-

ple which restricts attention to ancillaries that are physically part of the
sampling. In such a case we would presumably write our models di¤erently
so as to re�ect the fact that this sampling occurred in stages. In other
words, the universe is di¤erent than I; the one Birnbaum considered. There
doesn�t seem to be anything controversial about such a principle and it is
well-motivated by the two measuring instruments example and many others.

We don�t believe, however, that the weak conditionality principle resolves
the problem with conditionality more generally. For example, how does weak
conditionality deal with situations like Example 2-2 in Fraser (2004) and
many others like it? Conditioning on an ancillary seems absolutely essential
if we are to obtain sensible inferences in such examples, but there doesn�t
appear to be any physical aspect of the sampling that corresponds to the
relevant ancillary.

Many frequentist statisticians ignore conditionality but, as noted in Fraser
(2004), this is not logical. The theme in conditional inference is to �nd the
right hypothetical sequence of repeated samples to compare the observed
sample to. This takes us back to our question concerning the principle of
frequentism: why are we considering repeated samples anyway? A successful
frequentist theory of inference requires at least a resolution of the problems
with conditionality. The lack of such a resolution leads to doubts as to the
validity of the basic idea that underlies frequentism.

Issues concerning ancillaries are not irrelevant to Bayesians as they have
uses in model checking and checking for prior-data con�ict. Notice that the
principle of conditional probability does not imply that these activities need
refer to any kind of posterior probabilities and it is perfectly logical for these
to be based on prior probabilities. For example, model checking can be based
on the distribution of an ancillary or the conditional distribution of the data
given a minimal su¢ cient. Of course, C is not relevant for proper Bayesian
probability statements about �, as the principle of conditional probability
implies that we condition on all of the data.

We acknowledge that it is possible that the problems with C might be
�xable or even eliminated through a better understanding of what we are
trying to accomplish in statistical analyses � these aren�t just problems in
mathematics. We can�t resist noting, however, that the simple addition of
a proper prior to the ingredients does the job, at least for inference.
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4 Conclusions

Mayo�s paper contains a number of insightful comments and more gener-
ally it helps to focus attention on what is the most important question in
statistics, namely, what is the right way to formulate a statistical problem
and carry out a statistical analysis. To a certain extent, Birnbaum�s result
has been an impediment in moving forward towards developing a theory of
inference that has a solid foundation. It is good to have such underbrush
removed from the discussion. We have to give great credit to Birnbaum,
however, for his focus on what is important in achieving this goal, namely,
the measurement of statistical evidence. That his theorem has lasted for so
long is a testament to the di¢ culties involved in this task.

In general, we need a strong foundation for a theory of statistical infer-
ence rather than principles, often not clearly stated, that have only some
vague, intuitive appeal. The only way we can determine whether or not an
instance of statistical reasoning is correct, lies within the context of a sound
theory. That two statistical analyses based on the same data and addressing
the same question can be deemed to be correct and yet come to di¤erent
conclusions, is not a contradiction. Statistics tells us that we simply must
collect more data to resolve such di¤erences. In our view, the role of statis-
tics in science is to explain how to reason correctly in statistical contexts.
Without a strong theory we can�t do that.
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