Name	
Ctudent Number	
Student Number	

University of Toronto in Mississauga

December Examinations 2005 STA 442F Duration - 3 hours

Aids allowed: Calculator. Printouts will be supplied.

$$F = (\frac{n-p}{s})(\frac{a}{1-a})$$
 $a = \frac{R_F^2 - R_R^2}{1 - R_R^2} = \frac{sF}{n - p + sF}$

1. (8 Points) Make up an original study that would employ a one-way multivariate analysis of covariance with one quantitative covariate and two dependent variables. Give a paragraph briefly describing the study, followed by list of the variables; classify each variable as independent or dependent, and quantitative or categorical.

STA442F: Page 2 of 10

2.	`	oints) Answer each question below True or False. Write "T" or "F" on the line. must get at least 9 out of 10 correct in order to get credit for this question.
		In an observational study, a statistically significant relationship between the independent variable and the dependent variable can provide some evidence of a causal relationship if the study is well controlled.
		If a subject (case) provides data for more than one value of an independent variable, we call that independent variable a <i>within-subjects</i> variable.
		We observe $r=-0.70,p=.009.$ We conclude that that high values of X tend to go with low values of Y and low values of X tend to go with high values of Y .
		If $p<.05$ we say the results are statistically significant at the .05 level, and we conclude that the independent variable and the dependent variable are unrelated.
		In a study attempting to predict income from education and race, there is a significant interaction between education and race. This means that income and race are related.
		When you add another independent variable in multiple regression, \mathbb{R}^2 cannot go down.
		We observe $r=0.50,p=.002.$ This means that 50% of the variation in the dependent variable is explained by a linear relationship with the independent variable.
		An experimental study is one in which cases are randomly assigned to the different values of an independent variable.
		When a relationship between the independent variable and the dependent variable is not statistically significant, we conclude there is no relationship between the two variables in the population.
		A multivariate analysis is one with multiple independent variables.

STA442F: Page 3 of 10

- 3. (7 Points) Recall the **cars data**, in which you want to test for differences in fuel efficiency as a function of country (actually, region) of origin, while controlling for weight (X_1) and length (X_2) of vehicle. You need to set up a regression model using cell means coding; there will be no β_0 in the model.
 - (a) List all the independent variables in your model. Say how the dummy variables are defined.

(b) Make a table with three rows, one for each country. Make a column for each dummy variable, and show the value of the dummy variable for each country. Make one more column, a wider one. In that column, give the expected value of Y. Your expected value formulas must have only numbers, betas (β) and the symbols X_1 and X_2 .

STA442F: Page 4 of 10

- 4. Now please look at the printout for the cars data, and answer these questions:
 - (a) (5 Points) We want to test whether fuel efficiency is related to any of weight, length and country of origin. The null hypothesis is that fuel efficiency is not related to any of these variables.
 - i. What is the value of the test statistic? The answer is a single number.
 - ii. What is the p-value? The answer is a number or possibly a range of numbers, if p < .0001.
 - iii. Are the results statistically significant at the 0.05 level? Answer Yes or No.
 - (b) (3 Points) For any country of origin, and holding weight constant at a fixed level, is length positively related to fuel efficiency, or is it negatively related? How do you know? Your answer to this question should be the words "Positively Related" or "Negatively related," and a single number a parameter estimate.
 - (c) (5 Points) Controlling for country of origin, we want to test whether fuel efficiency is related to weight, length, or both.
 - i. What is the value of the test statistic? The answer is a single number.
 - ii. What is the p-value? The answer is a number or possibly a range of numbers, if p < .0001.
 - iii. Are the results statistically significant at the 0.05 level? Answer Yes or No.

STA442F: Page 5 of 10

- (d) (6 Points) Controlling for weight and length, we want to test whether fuel efficiency is related to country of origin.
 - i. What is the value of the test statistic? The answer is a single number.
 - ii. What is the p-value? The answer is a number or possibly a range of numbers, if p < .0001.
 - iii. Are the results statistically significant at the 0.05 level? Answer Yes or No.
 - iv. After allowing for the reduced model, what proportion of the remaining variation is explained by this effect?
- (e) (14 Points) Now we will look at one of the pairwise comparisons.
 - i. We want to test the difference between cars of U.S. versus Japanese origin, controlling for weight and length.
 - A. What is the value of the test statistic? The answer is a single number.
 - B. What is the *p*-value? The answer is a number or possibly a range of numbers, if p < .0001.
 - C. Are the results statistically significant at the 0.05 level? Answer Yes or No.
 - D. Are the results still statistically significant with a Bonferroni correction for the fact that we are making three pairwise comparisons? Answer Yes or No.
 - E. After allowing for the reduced model, what proportion of the remaining variation is explained by this effect?

STA442F: Page 6 of 10

ii. What is the predicted fuel efficiency in Kilometers per litre for a Japanese car of average weight and length? By average, I mean set weight and length to their sample mean values. The answer to this question is a single number. Please "show your work" by writing down the expression you are trying to calculate, and then doing it with your calculator.

iii. What is the predicted fuel efficiency in Kilometers per litre for a U.S. car of average weight and length? By average, I mean set weight and length to their sample mean values. The answer to this question is a single number. Please "show your work" by writing down the expression you are trying to calculate, and then doing it with your calculator.

iv. In plain, non-statistical language, what do you conclude about the relative fuel efficiency of U.S. and Japanese cars once you allow for length and weight? The answer is one short sentence; you have more room than you need.

STA442F: Page 7 of 10

- 5. (8 Points) Consider the Titanic data. For just adults, we want to know if survival was related to sex when one allows for class.
 - (a) Give the value of the test statistic. Your answer is a single number.
 - (b) The test is significant beyond any doubt. What degrees of freedom would you use to calculate the *p*-value? Your answer is a single number.
 - (c) Are the Bonferroni-corrected tests on the sub-tables all significant at the 0.05 level? Answer Yes or No. If the answer is No, specify which ones are not significant.
 - (d) In plain, non-statistical language, what do you conclude from this analysis?
- 6. (5 Points) In the analysis of the **shoe data**, I followed up a significant main effect for period (Before, During and After the advertising campaign) with Bonferroni-corrected pairwise comparisons of marginal means. In plain, non-statistical language, what do you conclude from the pairwise comparisons? *Marks will be deducted if you use even a single statistical term*.

STA442F: Page 8 of 10

7. (8 Points) Make up an original study with one categorical within-subjects independent variable, one quantitative between-subjects independent variable, and one categorical dependent variable. Give a paragraph briefly describing the study, followed by list of the variables; classify each variable as independent or dependent, and categorical or quantitative. State whether each independent variable is between-subjects or within-subjects.

STA442F: Page 9 of 10

8. (5 Points) For the **exercise tolerance data**, please focus upon the following question: Does the relationship of Smoking to exercise tolerance depend on Fat level? Answer the question and describe the results in plain, non-statistical language. Your answer should be guided by the results of a statistical test, but you must not mention that test explicitly.

- 9. (5 Points) For the **farm data**, we want to know whether the effect of irrigation method depends upon the type of fertilizer.
 - (a) What is the value of the test statistic? The answer is a single number.
 - (b) What is the *p*-value? The answer is a number or possibly a range of numbers, if p < .0001.
 - (c) Are the results statistically significant at the 0.05 level? Answer Yes or No.
 - (d) In plain, non-statistical language, what do you conclude?

STA442F: Page 10 of 10

10.	(8 Points	s) Giv	e an	examp	le of	a tru	ie expe	erim	${ m ental} { m s}$	tudy	with	one	independen	ιt
	variable,	and t	the c	conclusion	ons of	f the	study	are	invalid	l bec	ause	$of \ a$	confoundin	g
	variable.	Hint:	cons	sider a d	lrug s	tudy	withou	ıt a	double	bline	d.			

11. (5 Points) In the **wine study**, 6 judges rated 4 wines on a scale from 0 to 40, presented in random order and with a double blind. Based on the Bonferroni-corrected tests for pairwise differences between means, sort the wines into groups such that the members of each group of wines are *not* significantly different, and arrange the groups in order from highest to lowest quality. Here is an example of what I mean (of course this answer is incorrect):

"Wine 3 is rated highest, followed by Wines 1 and 4, followed by Wine 2."

Total marks = 100 points

STA442F05 Final Printout

Starting on Page

Table of Contents

```
Cars data:
Titanic data:
                               5
Exercise tolerance data
                              14
Farm data
                              17
Shoe data
                              21
Wine data
                              23
/****************** cars.sas ***************/
options linesize=79 pagesize=200 noovp formdlim='-';
title 'Metric Cars Data: STA442/1008 Final Exam';
proc format; /* Used to label values of the categorical variables */
     value carfmt 1 = 'US'
                      2 = 'Japanese'
                      3 = 'European';
data auto;
     infile 'mcars.dat' firstobs=2; /* Skip the first line */ input id country kpl weight length;
/* Cell Means Indicator dummy vars */
     if country = 1 then c1=1; else c1=0;
    if country = 2 then c2=1; else c2=0; if country = 3 then c3=1; else c3=0;
    label country = 'Country of Origin'
kpl = 'Kilometers per Litre';
     format country carfmt.;
proc reg simple;
     model kpl = weight length c1 c2 c3 / noint;
     TestA: test c1 = c2 = c3 = 0;
     TestB: test c1 = c2 = c3;
     TestC: test c1 = c2;
     TestD: test c1 = c3;
     TestE: test c2 = c3:
     TestF: test c1 = c2 = 0;
     TestG: test c1 = c3 = 0;
     TestH: test c2 = c3 = 0;
     TestI: test weight=length=0;
     TestJ: test weight=length=0, c1 = c2 = c3;
     TestK: test weight=length=0, c1 = c2 = c3 = 0;
```

cars.lst

ANCOVA with cell means coding using proc reg \$1\$ 15:56 Sunday, December 4, 2005

The REG Procedure

Descriptive Statistics

			Uncorrected		Standard
Variable	Sum	Mean	SS	Variance	Deviation
Intercept	100.00000	1.00000	100.00000	0	0
weight	141345	1413.45000	212754681	131016	361.96142
length	48489	484.88600	23811410	3029.97113	55.04517
c1	73.00000	0.73000	73.00000	0.19909	0.44620
c2	13.00000	0.13000	13.00000	0.11424	0.33800
c3	14.00000	0.14000	14.00000	0.12162	0.34874
kpl	879.48000	8.79480	8440.74000	7.13019	2.67024

ANCOVA with cell means coding using proc reg \$2\$ 15:56 Sunday, December 4, 2005

The REG Procedure Model: MODEL1

Dependent Variable: kpl Kilometers per Litre

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	8195.93850	1639.18770	636.12	<.0001
Error	95	244.80150	2.57686		
Uncorrected Total	100	8440.74000			

Root MSE	1.60526	R-Square	0.9710
Dependent Mean	8.79480	Adj R-Sq	0.9695
Coeff Var	18.25237		

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value
weight		1	-0.00207	0.00139	-1.49
length		1	-0.02874	0.00925	-3.11
c1		1	25.85295	2.83493	9.12
c2		1	24.49010	2.75828	8.88
c3		1	25.73537	2.69159	9.56

Page 2 of 26

	Variable	Label		DF Pr	> t			
	weight length				.1389 .0025			
	c1				.0001			
	c2				.0001			
	c3				.0001			
	Test Te		for Dependent					
	Source	DF	Mean Square	F Value	Pr > F			
	Numerator	3	81.87863	31.77	<.0001			
	Denominator	95	2.57686					
			for Dependent					
			Mean					
	Source	DF	Square	F Value	Pr > F			
	Numerator	2	8.50611	3.30	0.0411			
	Denominator	95	2.57686					
	Test Te	stC Results	for Dependent	Variable	kpl			
	_		Mean					
	Source	DF	Square	F Value	Pr > F			
	Numerator		15.74243	6.11	0.0152			
	Denominator	95	2.57686					
	Test Te	stD Results	for Dependent	Variable	kpl			
	_		Mean					
	Source	DF	Square	F Value	Pr > F			
	Numerator	1	0.12092	0.05	0.8290			
	Denominator	95	2.57686					
	Test TestE Results for Dependent Variable kpl							
	Source	DF	Mean Square	F Value	Pr > F			
	Source Numerator	DF 1						
		1	Square					

		Mean		
Source	DF		F Value	Pr > F
		107.30322	41.64	<.0001
Denominator	95	2.57686		
 Test TestG	Results	for Dependent	Variable k	pl
		Mean		
Source	DF	Square	F Value	Pr > F
		120.43287	46.74	<.0001
Denominator	95	2.57686		
Test TestH	Results	for Dependent	Variable k	pl
		Mean		
Source	DF	Square	F Value	Pr > F
		122.60725	47.58	<.0001
Denominator	95	2.57686		
Test TestI	Results	for Dependent	Variable k	pl
		Mean		
Source	DF	Square	F Value	Pr > F
Numerator		169.74773	65.87	<.0001
Denominator	95	2.57686		

Test TestF Results for Dependent Variable kpl

Test TestK Results for Dependent Variable kpl

Test TestJ Results for Dependent Variable kpl

Mean

2.57686

Square F Value Pr > F

4 115.27195 44.73 <.0001

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	5 95	1639.18770 2.57686	636.12	<.0001

Page 4 of 26

Source

Numerator

Denominator

```
title 'Titanic Data: STTA442 Final Check'; options linesize=79 pagesize=35 noovp formdlim='_';
proc format;
     value clfmt 0 = 'Crew';
     value agefmt 1 = 'Adult' 0 = 'Child';
     value sexfmt 1 = 'Male' 0 = 'Female';
value ynfmt 0 = 'No' 1 = 'Yes';
data iceberg;
     infile 'titanic.dat';
      input class age sex survived;
     pasclass = class; if pasclass=0 then pasclass=.;
manclass = class; if sex = 0 then manstat=.; if age=0 then manstat=.;
     adclass = class; if age=0 then adclass=.;
     label manclass = 'Class: Adult males only'
            adclass = 'Class: Adults only'
            pasclass = 'Passenger class';
      format class manclass adclass clfmt.:
     format age agefmt.; format sex sexfmt.; format survived ynfmt.;
proc freq;
     title2 'Just Adults';
     tables sex*survived*adclass
             / norow nopercent chisq expected;
     tables adclass*survived*sex
             / norow nopercent chisq expected;
data kids;
     set iceberg;
     if age=0;
proc freq;
     title2 'Just Children';
     tables survived * (class sex)
             / norow nopercent chisq expected;
```

titanic2.lst

Titanic Data: STTA442 Final Check 1
Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Table 1 of survived by adclass Controlling for sex=Female

survived adclass(Class: Adults only)

Frequency Expected Col Pct	/ Crew	1	2	3	Total
No	3 5.8988 13.04	4 36.932 2.78	13 23.852 13.98	89 42.318 53.94	109
Yes	20 17.101 86.96	140 107.07 97.22	80 69.148 86.02	76 122.68 46.06	316
Total	23	144	93	165	425

Frequency Missing = 45

Titanic Data: STTA442 Final Check 2
Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Statistics for Table 1 of survived by adclass Controlling for sex=Female

Statistic	DF	Value	Prob
Chi-Square	3	117.3107	<.0001
Likelihood Ratio Chi-Square	3	126.6013	<.0001
Mantel-Haenszel Chi-Square	1	95.5274	<.0001
Phi Coefficient		0.5254	
Contingency Coefficient		0.4651	
Cramer's V		0.5254	

Effective Sample Size = 425 Frequency Missing = 45

/* titanic2.sas */

Titanic Data: STTA442 Final Check 3
Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Table 2 of survived by adclass Controlling for sex=Male

survived adclass(Class: Adults only)

Frequency Expected Col Pct	 Crew	1	2	3	Total
No	670 687.22 77.73	118 139.52 67.43	154 133.94 91.67	387 368.33 83.77	1329
Yes	192 174.78 22.27	57 35.483 32.57	14 34.064 8.33	75 93.675 16.23	338
Total	862	175	168	462	1667

Frequency Missing = 64

Titanic Data: STTA442 Final Check 4
Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Statistics for Table 2 of survived by adclass Controlling for sex=Male

Statistic	DF	Value	Prob
Chi-Square	3	37.9879	<.0001
Likelihood Ratio Chi-Square	3	39.6102	<.0001
Mantel-Haenszel Chi-Square	1	12.0997	0.0005
Phi Coefficient		0.1510	
Contingency Coefficient		0.1493	
Cramer's V		0.1510	

Effective Sample Size = 1667 Frequency Missing = 64 Titanic Data: STTA442 Final Check 5
Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Table 1 of survived by sex Controlling for adclass=Crew

survived sex

Frequency Expected Col Pct	 Female	Male	Total
No	3 17.49 13.04	670 655.51 77.73	673
Yes	20 5.5096 86.96	192 206.49 22.27	212
Total	23	862	885

Titanic Data: STTA442 Final Check 6
Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Statistics for Table 1 of survived by sex Controlling for adclass=Crew

Statistic	DF	Value	Prob
Chi-Square Likelihood Ratio Chi-Square Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient Contingency Coefficient Cramer's V	1 1 1 1	51.4522 42.3508 47.9627 51.3941 -0.2411 0.2344 -0.2411	<.0001 <.0001 <.0001 <.0001

Fisher's Exact Test

Cell (1,1) Freque	ncy (F) 3
Left-sided Pr <=	F 1.655E-10
Right-sided Pr >=	F 1.0000

Table Probability (P) 1.588E-10
Two-sided Pr <= P 1.655E-10

Sample Size = 885

Titanic Data: STTA442 Final Check 7
Just Adults 17:05 Sunday, December 4, 2005

Table 2 of survived by sex Controlling for adclass=1

survived sex

Total

Frequency Expected Col Pct | Female | Male Total 118 No 122 55.072 | 66.928 2.78 67.43 140 57 197 Yes 88.928 108.07 97.22 32.57

Titanic Data: STTA442 Final Check 8
Just Adults 17:05 Sunday, December 4, 2005

319

The FREQ Procedure

144

Statistics for Table 2 of survived by sex Controlling for adclass=1

Statistic	DF	Value	Prob
Chi-Square Likelihood Ratio Chi-Square Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient Contingency Coefficient Cramer's V	1 1 1 1	139.8018 166.9868 137.0779 139.3636 -0.6620 0.5520 -0.6620	<.0001 <.0001 <.0001 <.0001

Fisher's Exact Test

Cell (1,1) Frequency (F) 4
Left-sided Pr <= F 1.541E-37
Right-sided Pr >= F 1.0000

Table Probability (P) 1.521E-37
Two-sided Pr <= P 1.625E-37

Sample Size = 319

Titanic Data: STTA442 Final Check 9
Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Table 3 of survived by sex Controlling for adclass=2

survived sex

Frequency Expected Col Pct	 Female	Male	Total
No	13 59.506 13.98	154 107.49 91.67	167
Yes	80 33.494 86.02	14 60.506 8.33	94
Total	93	168	261

Titanic Data: STTA442 Final Check 10
Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Statistics for Table 3 of survived by sex Controlling for adclass=2

Statistic	DF	Value	Prob
Chi-Square Likelihood Ratio Chi-Square Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient Contingency Coefficient	1 1 1 1	156.7827 169.5028 153.4296 156.1820 -0.7750 0.6126	<.0001 <.0001 <.0001 <.0001
Cramer's V		-0.7750	

Fisher's Exact Test

Cell (1,1) Frequency (F) 13 Left-sided Pr <= F 4.040E-38 Right-sided Pr >= F 1.0000 Table Probability (P) 3.981E-38 Two-sided Pr <= P 4.040E-38

Sample Size = 261

Titanic Data: STTA442 Final Check 11
Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Table 4 of survived by sex Controlling for adclass=3

survived sex

Frequency Expected Col Pct	 Female	Male	Total
No	89 125.26 53.94	387 350.74 83.77	476
Yes	76 39.737 46.06	75 111.26 16.23	151
Total	165	462	627

Titanic Data: STTA442 Final Check 12 Just Adults 17:05 Sunday, December 4, 2005

The FREQ Procedure

Statistics for Table 4 of survived by sex Controlling for adclass=3

Statistic	DF	Value	Prob
Chi-Square	1	59.1594	<.0001
Likelihood Ratio Chi-Square	1	54.7194	<.0001
Continuity Adj. Chi-Square	1	57.5393	<.0001
Mantel-Haenszel Chi-Square	1	59.0651	<.0001
Phi Coefficient		-0.3072	
Contingency Coefficient		0.2936	
Cramer's V		-0.3072	

Fisher's Exact Test

Cell (1,1) Frequency (F) 89
Left-sided Pr <= F 1.414E-13
Right-sided Pr >= F 1.0000

Table Probability (P) 1.102E-13Two-sided Pr <= P 2.336E-13

Sample Size = 627

Titanic Data: STTA442 Final Check 13
Just Children 17:05 Sunday, December 4, 2005

The FREQ Procedure

Table of survived by class

class

survived

Frequency Expected Col Pct	 1 +	2 +	3 	Total
No	0 2.8624 0.00	0 11.45 0.00	52 37.688 65.82	52
Yes	6 3.1376 100.00	24 12.55 100.00	27 41.312 34.18	57
Total	6	24	79	109

Titanic Data: STTA442 Final Check 14 Just Children 17:05 Sunday, December 4, 2005

The FREQ Procedure

Statistics for Table of survived by class

Statistic	DF	Value	Prob
Chi-Square	2	37.7615	<.0001
Likelihood Ratio Chi-Square	2	49.4084	<.0001
Mantel-Haenszel Chi-Square	1	32.4416	<.0001
Phi Coefficient		0.5886	
Contingency Coefficient		0.5072	
Cramer's V		0.5886	

WARNING: 33% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Sample Size = 109

Titanic Data: STTA442 Final Check 15
Just Children 17:05 Sunday, December 4, 2005

The FREQ Procedure

Table of survived by sex

survived sex

Frequency Expected Col Pct | Female | Male | Total No 17 I 35 21.468 30.532 37.78 54.69 Yes 28 29 57 23.532 33.468 62.22 45.31 +----+ 45 Total 64 109

Titanic Data: STTA442 Final Check 16 Just Children 17:05 Sunday, December 4, 2005

The FREQ Procedure

Statistics for Table of survived by sex

Statistic	DF	Value	Prob
Chi-Square	1	3.0284	0.0818
Likelihood Ratio Chi-Square	1	3.0502	0.0807
Continuity Adj. Chi-Square	1	2.3885	0.1222
Mantel-Haenszel Chi-Square	1	3.0006	0.0832
Phi Coefficient		-0.1667	
Contingency Coefficient		0.1644	
Cramer's V		-0.1667	

Fisher's Exact Test

Cell (1,1) Frequency (F)	17
Left-sided Pr <= F	0.0608
Right-sided Pr >= F	0.9739
Table Probability (P)	0.0347
Two-sided Pr <= P	0.1188

Sample Size = 109

```
/* extoler.sas */
title 'Exercise Tolerence Data: STTA442 Final Exam';
options linesize=79 pagesize=200 noovp formdlim='_';

proc format;
  value sexfmt 1 = 'Male' 2 = 'Female';
  value fatfmt 1 = 'Low' 2 = 'High';
  value smfmt 1 = 'Light' 2 = 'Heavy';

data nopain;
  infile 'extoler.dat' firstobs=2; /* Skip the first line */
  input Toler Sex Fat Smoke;
  format sex sexfmt.; format fat fatfmt.; format smoke smfmt.;
  label toler = 'Exercise tolerence in minutes';

proc glm;
  class Sex Fat Smoke;
  model toler = Sex[Fat|Smoke;
  means Sex|Fat|Smoke;
```

Exercise Tolerence Data: STTA442 Final Exam 1 23:36 Sunday, December 4, 2005

The GLM Procedure

Class Level Information

Class	Levels	Values
Sex	2	Female Male
Fat	2	High Low
Smoke	2	Heavy Light

Number of observations 2

Dependent Variable: Toler	Exercise tolerence in minutes					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	7	588.5829167	84.0832738	9.01	0.0002	
Error	16	149.3666667	9.3354167			
Corrected Total	23	737.9495833				

Page 14 of 26

	R-Square	Coeff	Var	Root 1	4SE	Toler	Mean	
	0.797592	18.7	7833	3.0553	391	16.2	7083	
Source		DF	Type I	SS	Mean	Square	F Value	Pr > F
Sex		1	176.58375	500	176.5	837500	18.92	0.0005
Fat		1	242.57041	67	242.5	704167	25.98	0.0001
Sex*Fat		1	13.65041	67	13.6	504167	1.46	0.2441
Smoke		1	70.38375	500	70.3	837500	7.54	0.0144
Sex*Smoke		1	11.07041	167	11.0	704167	1.19	0.2923
Fat*Smoke		1	72.45375	00	72.4	537500	7.76	0.0132
Sex*Fat*Smoke		1	1.87041	167	1.8	704167	0.20	0.6604
Source		DF	Type III	ss	Mean	Square	F Value	Pr > F
Sex		1	176.58375	500	176.5	837500	18.92	0.0005
Fat		1	242.57041	167	242.5	704167	25.98	0.0001
Sex*Fat		1	13.65041	167	13.6	504167	1.46	0.2441
Smoke		1	70.38375	00	70.3	837500	7.54	0.0144
Sex*Smoke		1	11.07041			704167	1.19	0.2923
Fat*Smoke		1	72.45375	00	72.4	537500	7.76	0.0132
Sex*Fat*Smoke		1	1.87041	167	1.8	704167	0.20	0.6604

Exercise Tolerence Data: STTA442 Final Exam $$3$\\23:36$ Sunday, December 4, 2005

The GLM Procedure

	Level	of			Tole	er	
	Sex		N		Mean	Std	Dev
	Female		12	13	.5583333	4.7210	2807
	Male		12	18	.9833333	5.3614	5050
	Level	of			То]	er	
	Fat	-	N		Mean		Dev
	High		12	13	.0916667	3.7266	7493
	Low		12	19	.4500000	5.5808	9273
Level	of	Level	of			Toler	
Sex	-	Fat	01	N		ean	
Female		High		6	11.1333		3.61146323
Female		Low		6	15.9833		4.67735680
Male		High		6	15.0500		2.88218667
Male		Low		6	22.9166	667	4.21920214

		Level Smoke	of	N			Toler Mean		d Dev	
		Heavy Light		12 12		14.558 17.983		4.857 6.090		
	Level	of	Level	of				_Toler		
	Sex	OI.	Smoke	OI.	N		Mea		Std	Dev
	Female	Э	Heavy		6		11.166666	7	3.20104	150
	Female	9	Light		6		15.950000		5.00589	
	Male		Heavy		6		17.950000	0	3.74793	276
	Male		Light		6	:	20.016666	7	6.82859	185
	Level	of	Level	of				-Toler-		
	Fat		Smoke		N		Mea	n	Std	Dev
	High		Heavy		6		13.116666	7	4.82303	501
	High		Light		6		13.066666	7	2.70012	345
	Low		Heavy		6		16.000000	0	4.86333	219
	Low		Light		6	:	22.900000	0	4.03782	119
Level	of	Level	of	Level	of				Toler	
Sex		Fat		Smoke		N		Mean		Std Dev
Female		High		Heavy		3	10.	2000000	4	.15090352
Female		High		Light		3	12.	0666667	3	.57258077
Female		Low		Heavy		3		1333333		.36290781
Female		Low		Light		3		8333333		.15483951
Male		High		Heavy		3		0333333		.92470806
Male		High		Light		3		0666667		.56950098
Male		Low		Heavy		3		8666667		.94844592
Male		Low		Light		3	25.	9666667	2	.81128678

```
/* finalfarm.sas */
options linesize=79 pagesize=100 noovp formdlim='_';
title 'STA442F05 Final Exam: Farm data from NWK Prob 29.20, p. 1204';

data wheat;
   infile 'farm2.dat' firstobs=2; /* Skip the first line */
    input Field IgMethod Yield1 Yield2;
   label igmethod = 'Irrigation Method'
        yield1 = 'Crop Yield with Fertilizer 1'
        yield2 = 'Crop Yield with Fertilizer 2';

proc means mean stddev n;
   class igmethod;
   var Yield1 Yield2;

proc glm;
   class igmethod;
   model yield1 yield2 = igmethod;
   repeated Fertilizr / short summary;
```

finalfarm.lst

STA442F05 Final Exam: Farm data from NWK Prob 29.20, p. 1204 \$1\$ 20:38 Monday, December 5, 2005

The MEANS Procedure

	Irrigation Method		N os V	/ariable	e Label Mean
		1		ield1 ield2	Crop Yield with Fertilizer 1 35.4000000 Crop Yield with Fertilizer 2 39.2000000
	:	2		ield1 ield2	Crop Yield with Fertilizer 1 52.2000000 Crop Yield with Fertilizer 2 55.8000000
	Irrigation Method	N Obs	Var	iable	Label Std Dev N
_	1	5	Yie Yie		Crop Yield with Fertilizer 1 6.5038450 5 Crop Yield with Fertilizer 2 6.8337398 5
	2	5			Crop Yield with Fertilizer 1 7.0498227 5 Crop Yield with Fertilizer 2 8.5848704 5
_					

STA442F05 Final Exam: Farm data from NWK Prob 29.20, p. 1204 \$2\$ 20:38 Monday, December 5, 2005

The GLM Procedure

Class Level Information

Class Levels Values
IgMethod 2 1 2

Number of observations 10

STA442F05 Final Exam: Farm data from NWK Prob 29.20, p. 1204 3 20:38 Monday, December 5, 2005

The GLM Procedure

Dependent Variable: Yield1 Crop Yield with Fertilizer 1

Source		DF	Sum Squa	of	Mean S	Square	F Value	Pr > F
Model		1	705.600	000	705.	600000	15.34	0.0044
Error		8	368.000	000	46.0	000000		
Corrected To	tal	9	1073.600	000				
	R-Square	Coeff		Root 6.782		Yield1	Mean	
Source		DF	Type I	ss	Mean S	Square	F Value	Pr > F

 IgMethod
 1
 705.6000000
 705.6000000
 15.34
 0.0044

 Source
 DF
 Type III SS
 Mean Square
 F Value
 Pr > F

 IgMethod
 1
 705.6000000
 705.6000000
 15.34
 0.0044

STA442F05 Final Exam: Farm data from NWK Prob 29.20, p. 1204 20:38 Monday, December 5, 2005

The GLM Procedure

Dependent Variable: Yield2 Crop Yield with Fertilizer 2

		Sum of	w a	T	
Source	DF	Squares	Mean Square	r value	Pr > r
Model	1	688.900000	688.900000	11.44	0.0096
Error	8	481.600000	60.200000		
Corrected Total	9	1170.500000			

	R-Square	Coeff	Var	Root MSE	Yield2	Mean	
	0.588552	16.3	3445	7.758866	47.	50000	
Source		DF	Type I	SS Mos	n Square	F Value	Pr > F
					-		
IgMethod		1	688.90000	000 688	3.9000000	11.44	0.0096
Source		DF	Type III	SS Mea	n Square	F Value	Pr > F
T. W. 13 3						11 44	0 0006
IgMethod		1	688.90000	000 688	3.9000000	11.44	0.0096

The GLM Procedure Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent	Variable	Yield1	Yield2
Level of	Fertlizr	1	2

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Fertlizr Effect H = Type III SSCP Matrix for Fertlizr E = Error SSCP Matrix

S=1 M=-0.5 N=3

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.14916097	45.63	1	8	0.0001
Pillai's Trace	0.85083903	45.63	1	8	0.0001
Hotelling-Lawley Trace	5.70416667	45.63	1	8	0.0001
Roy's Greatest Root	5.70416667	45.63	1	8	0.0001

Page 19 of 26

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Fertlizr*IgMethod Effect H = Type III SSCP Matrix for Fertlizr*IgMethod E = Error SSCP Matrix

S=1 M=-0.5 N=3

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.99585062	0.03	1	8	0.8597
Pillai's Trace	0.00414938	0.03	1	8	0.8597
Hotelling-Lawley Trace	0.00416667	0.03	1	8	0.8597
Roy's Greatest Root	0.00416667	0.03	1	8	0.8597

STA442F05 Final Exam: Farm data from NWK Prob 29.20, p. 1204 $$\rm 6$$ 20:38 Monday, December 5, 2005

The GLM Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects

Source	DF	Type III SS	Mean Square	F Value	Pr > F
IgMethod Error	1 8	1394.450000 837.600000	1394.450000 104.700000	13.32	0.0065

STA442F05 Final Exam: Farm data from NWK Prob 29.20, p. 1204 20:38 Monday, December 5, 2005

The GLM Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Fertlizr Fertlizr*IgMethod Error(Fertlizr)	1 1 8	68.45000000 0.05000000 12.00000000	68.45000000 0.05000000 1.50000000	45.63 0.03	0.0001 0.8597

```
/* finalshoe.sas */
options linesize=79 pagesize=100 noovp formdlim='_';
title 'STA442F05 Final Exam: Shoe data from NWK Table 29.10';
data uvfoot;
  infile 'shoes.dat' firstobs=2; /* Skip the first line */
  input row ident period campaign sales;
proc mixed cl;
  class period campaign;
  model sales = period | campaign;
  repeated / type = un subject = ident;
  lsmeans period / adjust=bon;
```

finalshoe.lst

STA442F05 Final Exam: Shoe data from NWK Table 29.10 \$1\$ 20:15 Monday, December 5, 2005

The Mixed Procedure

Model Information

Data Set WORK.UVFOOT
Dependent Variable sales
Covariance Structure
Subject Effect ident
Estimation Method
Residual Variance Method
Fixed Effects SE Method
Degrees of Freedom Method
Between-Within

Class Level Information

Class	Levels	Values
period	3	1 2 3
campaign	2	1 2

Dimensions

Covariance	Parameters	6
Columns in	X	12
Columns in	Z	0
Subjects		10
Max Obs Per	Subject	3
Observation	ıs Used	30
Observation	s Not Used	0
Total Obser	vations	30

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	347.69129449	
1	1	256.26815630	0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Subject	Estimate	Alpha	Lower	Upper
UN(1,1)	ident	75290	0.05	34350	276326
UN(2,1)	ident	79440	0.05	1502.45	157377
UN(2,2)	ident	84197	0.05	38414	309017
UN(3,1)	ident	72731	0.05	1410.04	144051
UN(3,2)	ident	76682	0.05	1373.22	151990
UN(3,3)	ident	70440	0.05	32138	258527

Fit Statistics

-2 Res Log Likelihood	256.3
AIC (smaller is better)	268.3
AICC (smaller is better)	273.2
BTC (smaller is better)	270.1

Null Model Likelihood Ratio Test

DF	Chi-Square	Pr > ChiSc

5 91.42 <.0001

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
period	2	8	54.03	<.0001
campaign	1	8	0.73	0.4166
period*campaign	2	8	2.94	0.1101

Least Squares Means

Effect	period	Estimate	Standard Error	DF	t Value	Pr > t
period	1	648.40	86.7695	8	7.47	<.0001
period	2	728.80	91.7588	8	7.94	<.0001
period	3	616.40	83.9284	8	7.34	<.0001

Page 21 of 26

Page 22 of 26

STA442F05 Final Exam: Shoe data from NWK Table 29.10 \$2\$ 20:15 Monday, December 5, 2005

The Mixed Procedure

Differences of Least Squares Means

Effect	period	_period	Estimate	Standard Error			Pr > t
period	1	2	-80.4000	7.7910	8	-10.32	<.0001
period	1	3	32.0000	5.1764	8	6.18	0.0003
period	2	3	112.40	11.2821	8	9.96	< .0001

Differences of Least Squares Means

Effect	period	_period	Adjustment	Adj P
period	1	2	Bonferroni	<.0001
period	1	3	Bonferroni	0.0008
period	2	3	Bonferroni	<.0001

/* finalwine.sas */

```
options linesize=79 pagesize=100 noovp formdlim='_';
title 'STA442F05 Final Exam: Wine tasting data from NWK p. 1169';

data wine;
   infile 'wine.dat' firstobs=2; /* Skip the first line (header) */
   input Judge Wine Rating;

proc means mean stddev;
   class wine;
   var rating;

proc mixed;
   class wine;
   model rating = wine;
   repeated / type = cs subject = judge;
   lsmeans wine / adjust=bon;
```

finalwine.lst

STA442F05 Final Exam: Wine tasting data from NWK p. 1169 $$\rm 1$$ 21:58 Monday, December 5, 2005

The MEANS Procedure

Analysis Variable : Rating

Wine	N Obs	Mean	Std Dev
1	6	20.0000000	3.7416574
2	6	22.0000000	3.1622777
3	6	26.6666667	2.6583203
4	6	26.0000000	2.6076810

STA442F05 Final Exam: Wine tasting data from NWK p. 1169 2 21:58 Monday, December 5, 2005

The Mixed Procedure

Model Information

Data Set WORK.WINE Rating Dependent Variable Covariance Structure Compound Symmetry Subject Effect Judge Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

Wine

4 1 2 3 4

Iteration History

Criterion	-2 Res Log Like	Evaluations	Iteration
	108.88011634	1	0
0.00000000	82,62155007	1	1

Page 24 of 26

Page 23 of 26

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Subject	Estimate
cs	Judge	8.4000
Residual		1.0667

Fit Statistics

-2 Res Log Likelihood	82.6
AIC (smaller is better)	86.6
AICC (smaller is better)	87.3
BIC (smaller is better)	86.2

Null Model Likelihood Ratio Test

DF	Chi-Square	Pr > ChiSq
1	26.26	<.0001

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Wine	3	15	57.50	<.0001

Least Squares Means

			Standard			
Effect	Wine	Estimate	Error	DF	t Value	Pr > t
Wine	1	20.0000	1.2561	15	15.92	<.0001
Wine	2	22.0000	1.2561	15	17.51	<.0001
Wine	3	26.6667	1.2561	15	21.23	<.0001
Wine	4	26.0000	1.2561	15	20.70	<.0001

Differences of Least Squares Means

				Standard				
Effect	Wine	_Wine	Estimate	Error	DF	t Value	Pr > t	Adjustment
Wine	1	2	-2.0000	0.5963	15	-3.35	0.0043	Bonferroni
Wine	1	3	-6.6667	0.5963	15	-11.18	<.0001	Bonferroni
Wine	1	4	-6.0000	0.5963	15	-10.06	<.0001	Bonferroni
Wine	2	3	-4.6667	0.5963	15	-7.83	<.0001	Bonferroni
Wine	2	4	-4.0000	0.5963	15	-6.71	<.0001	Bonferroni
Wino	3	4	0 6667	0.5963	15	1 12	0 2011	Donforroni

Page 25 of 26

STA442F05 Final Exam: Wine tasting data from NWK p. 1169 $$\rm 3$$ 21:58 Monday, December 5, 2005

The Mixed Procedure

Differences of Least Squares Means

Effect	Wine	$_{\tt Wine}$	Adj P
Wine	1	2	0.0261
Wine	1	3	<.0001
Wine	1	4	<.0001
Wine	2	3	<.0001
Wine	2	4	<.0001
Wine	3	4	1.0000

Page 26 of 26