

Name _____

~~Jerry~~

Student Number _____

STA 431s13 Quiz 5

In the following model, X_i , $Y_{i,1}$ and $Y_{i,2}$ are latent variables, while only W_i , $V_{i,1}$ and $V_{i,2}$ are observable. Independently for $i = 1, \dots, n$, let

$$\begin{aligned} Y_{i,1} &= \beta_1 X_i + \epsilon_{i,1} \\ Y_{i,2} &= \beta_2 X_i + \epsilon_{i,2} \\ V_{i,1} &= Y_{i,1} + e_{i,1} \\ V_{i,2} &= Y_{i,2} + e_{i,2} \\ W_i &= X_i + e_{i,3}, \end{aligned}$$

where $X_i \sim N(0, \phi)$, $\epsilon_{i,1} \sim N(0, \psi_1)$, $\epsilon_{i,2} \sim N(0, \psi_2)$, $e_{i,1} \sim N(0, \omega_1)$, $e_{i,2} \sim N(0, \omega_2)$, $e_{i,3} \sim N(0, \omega_3)$, and all these variables are independent.

1. (1 point) What is the parameter vector θ for this model?

$$\theta = (\beta_1, \beta_2, \phi, \psi_1, \psi_2, \omega_1, \omega_2, \omega_3)$$

2. (1 point) Does this problem pass the test of the Parameter Count Rule? Answer Yes or No and give the numbers.

No. There are 8 parameters, but only 6 covariance structure equations.

3. (3 points) Calculate $\text{Cov}(V_{i,1}, V_{i,2})$. Show your work. Note that the variables are already centered.

$$\begin{aligned} \text{Cov}(V_1, V_2) &= E(V_1 V_2) = E(Y_1 + \epsilon_1)(Y_2 + \epsilon_2) \\ &= E(\beta_1 X + \epsilon_1)(\beta_2 X + \epsilon_2) \\ &= \beta_1 \beta_2 E(X^2) + 0 \\ &= \beta_1 \beta_2 \phi \end{aligned}$$

$$W = X + \mathcal{E}_3$$

$$V_1 = \beta_1 X + \varepsilon_1 + e_1$$

$$V_2 = \beta_2 X + \varepsilon_2 + e_2$$

4. (2 points) Write down the covariance matrix of the observable variables, which of course includes your answer to the preceding question. You *do not* need to show your work for this part.

	W	V ₁	V ₂
W	$\phi + w_3$	$\beta_1 \phi$	$\beta_2 \phi = \sigma_{13}$
V ₁		$\beta_1^2 \phi + \psi_1 + w_1$	$\beta_1 \beta_2 \phi = \sigma_{23}$
V ₂			$\beta_2^2 \phi + \psi_2 + w_2$

5. (3 points) Assume that $Y_{i,2}$ is a well-chosen instrumental variable, so that $\beta_2 \neq 0$. Under this assumption, is β_1 identifiable? **Answer Yes or No and circle your answer.** Prove it. If the answer is Yes, show how β_1 can be recovered from the covariance matrix. If the answer is no, give a numerical of two parameter vectors with $\beta_2 \neq 0$, different values of β_1 , and exactly the same covariance matrix $[\sigma_{ij}]$.

$$\text{Yes: } \beta_1 = \frac{\sigma_{23}}{\sigma_{13}}$$