








for some function p or equivalently as a solution to the equation

S Xma( Xy — dpXem1) =0

t=2

for some function ¢, where usually we can think of ¢ as the derivative of p. Assume,
(Al) pis a convex, differentiable function;

(A2) E(¢*(e1)) < o0, E(¢p(e1)) = 0, and E(€?) = 0.

(A3’) 9 has Lipschitz-continuous derivative ¢’ and 0 < E(|¢'(e1)]) < oo.

Under the above conditions, it has been shown that,

w, E'P(¢%(a)) o S(s) dW(s)

annt?(dpr — 1) - .
O T T ) fy sy de 20
n /2 1/2(,,2
(Sxe) Gu-n = Slrelway (2.1)

and W(1) has a standard normal distribution.
If a,n/2(1 - b,) — B, and a, = n'/*L(n), where L(-) is slowly varying at infinity, we will get
n(l = b,) — 0. Thus,

w, EYA((a)) fo S(s)dW (s)

ann1/2 b — n) — .
=0 = TR ) 1 525y -
2 Vg BV {(y(ey))
2 - A S .7 74
@XH) =0 = Tty 29

(See Knight (1989) for details.)

3 Results.

In this section we will discuss this problem for the more realistic case where we do not know the
distribution of the errors, and where we only assume that the errors are in the domain of attraction
of a stable law with index ¢ and 0 < a < 2. ’

Lemma 3.1. Let M, (t) = (M1,,(%),..., Mpx(t),0,0,...), and suppose that the joint characteristic
function of (My (1), .., Mp (%)) has the form

et
. .

$(51,. -, 8n) = (=

Then
M,() <% P() on D[0,1]x D[0,1]x -

with respect to Skorohod topology, where (Py(t), P(t),...) are independent Poisson processes
with the same distribution and with Lebesgue mean measures.
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Proof. To prove this, we have to show that
.d.d.
M () 25 () (3.1)

and that {M,()} is tight. Since M,(+) has stattionary, independent increments, for f.d.d. conver-
gence we only have to show

M, (t) = P(t) for'all tin [0,1]
and this is clear using the characteristic function.

For tightness it is enough to show {Mj,(t)} is tight, because in general using the Tychonov
theorem (See for example Simmons [1963, page 119]) and tightness of each coordinate similar to
the [Billingsley (1968), problem 6, page 17], we can easily show M,y/(-) is tight. To show {M; ()}
is tight, by Billingsley [1968, page 128] it is enough to show,

E[(Min(t) = Min(t1))(Min(t2) = Min(£))"] < (F(t2) — F(t1))*™

for v > 0, o > 1/2 for a nondecreasing function F on [0,1],and 0 < #; <t <3 < 1. To check this
take ¥ = 2 and notice that

() ) el = ), _ g,

for 0 < #; <t <ty <1, (see Billingsley (1968), page 138). We will get
E [(Min(t) = Min(11))’ (Min(t2) — Min(#))?]

= B [(Min(t) — Min(t1))] B [(Min(t2) = Min(1))?]

< {[nt] - [nt:] . ([nt] - [nt1]>2} {[ntg]n— [nd] ([ntz]n— [nd] z)}

<4 ‘([nt] - [ntﬂ) ([ntz]n— [nt]> < 16(ty — 1,)?

n

In fact F(t) =4t ,a=1. O _
If {¢},€3,...,€,} are the usual bootstrap sample from {e; — €, €2 — &, ..., €, — €}, we will have

in general

[nt] n
Y6 =0 S M@ —7)
1=1 S |

where M(t) = (M7, (2),-. . My ,(1),0,0,...) is as in Lemma 3.1, and {¢f,€5,...,€,} are ii.d.
from the following distribution, '

Fo(z) = %iI(q —e<L ) (3.2)

We will use this representation for the study of the partial sum process later.
In order to study the large sample theory in the bootstrap world sometimes we need to discuss it
in the random measures context. Assume X3, Xs,..., X, is anii.d. sample and T, (X1, X2,...,X,)
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is the statistic under investigation. The bootstrap distribution of T»( X1, Xs,...,X,) is a random
distribution function; that is, it is a function of observations X, X2,..., X,. If P} is the bootstrap
(random) measure of T}y, we will study the behavior of the random probability measure Px(-) for
any set A as n gets large. .

In the following, we will briefly discuss some properties of the random measures. For the further
aspects, see Kallenberg (1983). ‘

Assume (C, p) is a Polish space (for example D0, 1] with Skorohod topology) and assume B(C)
is the Borel o-field generated by open sets in (C, p). Let M4 (C) be all non-negative Radon measures
(i.e., measures of compact sets is always finite). Consider M(C) to be smallest o-field of subsets
of M, (C) making the maps u — [ fdu from M, (C) — R measurable for all functions f on C with
compact support. A

By a random measure on C we mean any measurable mapping of some fixed probability space
(Q, A, P) into (M4(C), M4(C). Define, py, 23 u (weakly in distribution) if

’ /fdnnﬂ/fdﬂ

for any real valued , bounded, and continuous function on C, and u, 2, p (vaguely in distribution)

if,
[ fau 2 [ sau

for any real valued continuous function on C with compact support.

(Note that convergence in distribution of random measures is a different concept than weak
convergence of probability measures; Py converges weakly to P if, for any real valued, bounded,
and continuous function f, [ f dP, — [ f dP.) We may also define y,, =5 p (vaguely in proba,bilify)

if
[ fdun 2 [ fau

for any real valued continuous function on C with compact support. Similarly u, 2y (weakly in

probability) if
/ fdpin 2 / fdu

for any real valued, bounded, and continuous function on C. It is obvious that if the weak or vague
limit of any sequence of random measures is fixed then convergence in distribution is equivalent to
convergence in probability.)

It can be shown that if M, (C) is topologized with the vague topology then M (C) is the Borel
o-field with respect to this topology. Notice that if {u,}, u are random probability measures on
(C,B(C)) we have p,(C) = u(C) = 1. Therefore from Kallenberg (1983, page 37), we get

pn Zp i e B

(From now on for these cases we use “wd”.)



It can be shown that under the vague topology, M4 (C) is a complete and separable metric space.
(See Resnick (1987, page 147)). Notice that since the composition of two continuous functions is
continuous, then the continuous mapping theorem will hold for random measures.

The following theorem gives us a good reason to investigate the result of Basawa et al (1991)
- for M-estimators, when errors have infinite variances. In this theorem we will use parametric re-
sampling, as Basawa et al (1991) did in their investigations. We will also discuss the nonparametric
case later .

Theorem 3.1. In the model X; = ¢X;—1 + € with ¢ = 1 and {€1,...,€,} are ii.d random
variables which are in the domain of attraction of a stable law with index o, 0 < a < 2,
with E(e?) = oo. Assume {e},...,¢:} and {ej,...,€,} have the same distribution. Given
{€1,...,€,} we have ' .

anM2(d%, — & ‘gg = E1/2(¢2(51))f33(3)dw(5)
) T T ) f 50y ds

where, ‘257\4 and ¢y are M-estimators of ¢ based on {¢},...,€} and {ey,...,€,} respectively.

Proof. Since a,nt/ 2(dpr — 1) % U, by Skorohod representation there exists a probability space
and random variables Gy and V, satisfying b D <2>M and VEU , such that

annl/z(éM -1) 23U
By using the same argument as in Basawa et al (1991) and (2.8) we get

a2t — Gy 2 7 = EYN2(4%(e1)) fo S(s) dW(s)
n 1 (¢M ¢M) .U— E(¢I(el)) fol Sz(s)ds .

As a result, we have shown the recovery of this type of parametric bootstrap by using M- '

estimators instead of the least squares estimators in the infinite variance case. This is primarily
due to the rapid convergence of dps to 1 (faster than 1/n). It seems that the behavior of the .
M-estimators are different from the least squares estimators in this case. We will study this in the
following section.

In the following two theorems we will look at the behavior of the bootstrap partial sum process
where the original observations are in the domain of attraction of a stable law with index a € (0, 2].
These results will provide a strong tool for dealing with weak convergence results in many important
functionals of partial sum processes. We will use them to evaluate some limiting distributions in the
bootstrap world. Note that P* denotes the bootstrap probability meaéu_re of the random elements.

Theorem 3.2 If {¢;} are i.i.d. and E(g;) = 0, and are in the domain of attraction of the normal
law and {€7, €5, ...,€,} are i.i.d. from F, in (3.2) then

) ]

0= gt T Y
1=1\*? i=1

for almost any sample path {e1, €2, €3,...}.

(3.3)



Proof. First,

Sa(-) T2 w ()

for almost all sample paths, to see this, we know 5,(:) has independent increments and it is

stationary, so it is equivalent to show,

1 . w
—_—_—) ¢ — W(1) as.
V ?:1 (62' - 6)2 ;
and this has been shown by Hall (1990, Theorem 2.1). In the next step we show Sy,(-) is almost
sure tight. Assume P is the conditional probability measure with conditioning on original sample,

we will have

P; {0<rzr;a;3§ suPIS (t) = Sa(t) > 63 — 0

(see Pollard (1984, page 92). We have

m—1
i e oupl.0 - 5:001 > 6 < 3 B 150 - 8,001 >

Using the Levy-Skorohod inequality with ¢ = 1/2 and XA = § we have
Py {Sup |Sn(t) = Sn(ti)] > 5} < 2P7{ISn(t) — Sa(ti)| > 6/2}
teJ;

and we have Var* (S,(t) — Sa(%:)) = In—t‘i—l]—_-@l $0

m—1 m—1
limsup Y Px [sup 1S (2) = Sn (t N> 6] <2y hmsupP* {|Sn(tig1) — Sn(ti)| > 6/2}
T =0 teJ, =0 "
4
=2 Z P{IN(O,1/m)| > §/2} < 32"25‘2) <e
for large enough m. O

If E(€?) = 02 < oo then the following corollary follows trivially since

- Z(ez - 6)2 3 o2
1—1
Corollary 3.1 With the same assumptions as in Theorem 3.1, and assuming E(e?) = 0? < o0, we

have
[nt]

nTV2N e s oW (t)  aus. - (34)

=1



Theorem 3.3 Let {¢1,...,€,} be i.i.d. random variables in the domain of attraction of a strictly
stable law with index @, 0 < a < 2, and assume {¢},...,€:} arei.i.d. random variables from
the distribution function

Fa(e) = %f}z(g <2) (3.5).
=1 )
Then -
S%(t) = a‘IZG 2, §%(t) = ZP*(t)& r'1/°’ (3.6) .

where {P}(t)} are independent Poisson processes with Lebesgue mean measure and, {d;} and
{T;} are the same as in (2.5).

Proof. We have

[nt]
a;! Z & =a’ Z M, (t)ein
=1 =1

where |e1n| > |€2,0| > - .. > |€nnl, in which {€1,...,€x,n} is 2 permutation of {¢1,...,€,}. Assume
0 = Sign(ein), 1=1,2,---,n, we get

Tn = a’r—z,.l (Iel,nla LERY) Ien,n|a070707 . ) e T= (1-\—1/0! I\_l/a o )

and, ;
Ap = (6105100, 1,1,1,...) = A = (81,6s,...).

Since R* is complete and separable with respect to the metric

o0
& —wl s
d(z,y) =)  ———27"
o 1+ | — il

there exists a probability space under the ebove metric such that,
d(Tr,T) =30 and d(An,A) 250
We will show on this probability space, for ¢ > 0,
Sr(e) i» S*(-) in distribution;

-1/a a.s,

Since T’y /" — 0, we have

S SkalétnlI(enal > )Mz <5 32 6TV ITTY > ) PE()
k=1 =1
using Lemma 3.1, and, in addition,

OS<11£1 Z 6k,n|€k,n|I(|€k,nl < C)Mk,n(t) < E |€k,n|I(|€k nl < C)Mk n(1) B 0
k=1 k=1



as ¢ — 0 almost sure P as n — 00, (see Knight (1989, Theorem 2). Thus it suffices to show

Z ST rT < ey Pr(r)| 25
k=1

_ sup
0<t<1

almost surely P. This is clear because,

Z STV < ) Pp(t)| < sup S TRr@y V™ < o)pr(1) £ 0
<t<1,_

sup
0<t<1 |21
Cas. PO
Corollary 3.2 With the same assumptions as in the Theorem 3.2, assume {],...,€;} are i.i.d.

sample from

1 & B
F.(z)= ;;I(ei —-é<2)
we have

S*(t) = a—lze* 22 §%(t) = i(Pi*(t)—t)éiF:l/a.

1=1

Proof. Note that

Sx(t) = a;? Z Tt (e — &) = ay? Z (e = ay e Zn:Mi,n(t)

=1 =1 =1
- .

= SO(Pr(E) - 06T o
1=1

The following two lemmas will allow us to get the final result.(Theorem 3.4)

Lemma 3.2 If Z%(-) and Z*(-) are real valued convex stochastic processes on a random proba-
bility space (in fact P*(Z; € -) and P*(Z* € -) are random probability measures). Assume
Z) — fdg Z*(-) in distribution then there exist stochastic processes Z;*(-) and Z**(-) with

the same distribution as Z}(-) and Z*(-) respectively such that

(ZX*(t1)y - - o5 Z25 () == (Z7(t1), - - -, Z7*(tk))
for any ti,...,t in R. Moreover, if U minimizes Z(:), and U™ minimizes Z*(-) then
Ur 2 e

Proof. Since Z(:) — fdg

Z*(+) in distribution, thus for all real vectors (#1,%2,...,%) we have
(Z3(02), s Zo(t8)) 2% (27(t0), -+ 27(t8):

Thus,
G%(uy ..y up) — ¢*(uy,---oug)  on  {C%(—o0,400)}*
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where @) (u1,...,ux) and ¢*(u1,...,ux) are characteristic functions of (Z;(¢1),...,Z;(tk)) and
(Z*(t1), ..., Z*(tr)) alternatively. By Skorohod representation there exist a probab111ty space and
appropriate random processes such that

¢:;*(’U,1, ey Uk) -Cf'—s'> ¢**(U1, e ,’LLk).
Where
(U, ey ut) 2 Bh(u, .. pux) and ¢ (ug,...,up) 2 ¢ (ur, . .., u).

Using Bochner’s theorem ¢}*,¢** are characteristic functions with probability one, thus there are
random vectors (Zy*(t1),...,Z3*(tx)) and (Z**(t1),...,Z2**(x)) with characteristic functions ¢
and ¢* such that .
(Z3 (), Z37(88)) 2 (Z3(10), - Za(t)
and A ‘

(270, 2 W) B (25 (), 27(0))
In fact using Kolmogorov existence theorem Z7*(-) D ZX() Z2*(+) 2 Z**(+). By Lemma A in Knight
(1989) and the Skorohod representation, there exist a probability space and random variables U*

and U** on that space such that,

U;'L‘* — U*  almost surely

and :
uyr 2 Uy and U™ 2y~
Thus U} — U* in distribution. .00

Lemma 3.3 Supposé {€1,...,€,} are ii.d. random variables in the domain of attraction of a .

stable law with index o € (0,2]. Assume E(e}) = oo, E(g(&;)) = 0 and E(g%(e;)) = 1,
E(|h(&)]) < oo. Let {e],...,€:} be an i.i.d. sample from the distribution in (3.5). Define

[ns]

F3(s) = = > (h(el) - (D),
7=1
[ns]
Sn(s) = a;l D et
=1
and
[ns]
Wi(s) = E g(€})
2—1
where
OEFORY FOLLAO)
Then,

@) /0 52 () dW(s) 2 : §*(s) dW (s)
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and L
(ii) / §22(s) dE%(s) % 0
0
where §*() is as (3.6) and W is a Brownian motion. The integral in limiting distribution is

an Ito stochastic integral.

Proof. Based on Theorems 3.1 and 3.2 and Lemma 3.2, together with an argument similar to
Lemma 1 in Knight(1989), we can easily establish (i). For (ii), notice that E}(¢) has independent

increments, thus clearly
1 I

Z(h(f ~ h(e)) =

z—l
Define,

= — 1\, [i—1 i
Vim(s) =D _ 52 (2 ) I{ <s< —} + S2(D)I(s = 1).
; m m - m

By integration by parts twice, we will have

o= stomn-F (2) {5 (8) - (52—

for almost every sample path. Given {e1,...,€,}, {V, m(u) 0<u<s}and {Sy(u);0<u< s} are
independent from {E}(u) — EX(s);s < u < 1}.
We will have,

S72(s™) = ViE (5™ )\ < M} dE}(s)

E

852(57) = Vom(s7)| < M} ds

lim lim E*{

m—+00 N—+00

/0 ' (s;;?(s-) — V(7)) I

(|832(s7) = Varm(s)|) 1 {

lim lim — lh(e,) h(e)'/ E*

m—00 N—>+00

Qa.s. 0

since

2 X [pte) - @] 2 B {[hte) - P}

Moreover,

lim  lim P*{l / 5*2(5 ~ Vin(sT) I (

M —r00 MN—"+00

>5}'

8§32(s7) = Vin(s™)| > M) dE;(s)

< lim lim P* ( sup [Sx3(s7) — V;m(s‘)\ > M) =0.

M ——00 M,N—">00 05331
Therefore, :
1
/ S*2(s7)dEx(s) 2B 0. O
0
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Theorem 3.4 Let assumptions (A1), (A2), (A3) hold and suppose that ¢}, minimizes
‘ : . . n
D*(¢) = _p(X; — $Xiy)
=2
where

X =Xi,+¢ 3.7,

{€f,...,€} are i.i.d. sample from (3.5) and {e1,...,€,} are in the domain of attraction of
the stable law with index a € (0,2]. Then

. n 1/2 N wo E? (¢2(€1))
o (Trn) @) = Friee
and if instead of the (8.7) we have X} = Xy + € then
n 1/2 i/2 (.12 .
. * 1 2 wp E (¢ (61))

where ¢ minimizes (2.5).

Proof. For (i) define,

n
Zy(w) = Y {p (¢ +uaz"n ™2 X24) — p (&)}
=2
By a Taylor series expansion of summands of Z;(-) around u = 0, we get.

Z3(w) = wan Y X2y { (&) - B} + uan2(n - 15(E)

- t=2

1 Lo e '
+§u2an2n IZXffl'gb (e¥)
=2 ’

where €* = € +u*a;ln"Y 2X}_, for some u* between 0 and u. By using Lipschitz continuity of P,
we will have

watn S X ()~ ¥ (D)) S batn Y538 (F22) 22
' =2 , t=2 :

uniformly over u in compact sets for almost any sample path because
N t—1 1 wd 1
n~! 25,23 (—) = / S§33(s7)ds = / §*3(s7) ds.
t=2 n 0 0

On the other hand,

wan~ X () - F@) = [ S267)dB(s) 2 0
t=2
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uniformly over u in compact sets. Also, clearly
wa; n" Y2 (n — 1)3(e) &3 0

uniformly over « in compact sets. Therefore Z7(u) d, Z*(u) where

2*(w) = BV {$*(e1) }w /0 * §(s) AW (s) + %EE [¥(@)} /0 " 542(s) ds

for any u in compact sets. By using Cramer-Wold device we can show the finite dimensional
distributions of Z(-) converge weakly to the finite dimensional distributions of Z*(-) in distribution
and thus by Lemma 3.3 the minimizer of Z}(u) converges weakly to the minimizer of Z*(u) in
distribution. The minimizer of Z(u) is an/n(1 — ¢};) and therefore

EY? {*(e1)} fy 57(s) dW™(s)
E{g'(a)} [y 2s)ds

an\/ﬁ($*M - 1) w_d> 0
Furthermore,
n 1/2 n -1 ‘
(ngf’l) Gu-1 = {a;zn_l Y5 (T)} any/n($hr = 1)
t=2 =2

v BV {80)} [5°(s) W)
E{¢'(e1)} {fol 5+2(s) d$}1/2'

1/2

For (ii), notice that

an/(ar — 1) 5 U = EY2 {p%(e1)} Jo S(s)dW(s)
n\/—_(ng 1) U= E{¢,(€1)} fol 52(3) s .

By the Skorohod representation, there is a probability space and random variables 6, and V in
which 6y, 2 éar and V 2 U such that an\/ﬁ@M —1) =3 V. Since a,, = nl/aL(n) and n is a slowly
varying function at infinity we get n(éM —1) 22 0. By the same argument for nearly nonstationary
process in Knight (1989) with 8 = 0 (ii) will follow. O

Remarks.

1. If E(€?) < oo then as in (2.4) we will have
(8n()s Wa()) = (Wa(-), Wa(")) on  D[0,1]x DI[0,1]

where in this case (Wy(-), Wy(+)) is a bivariate Brownian motion and Wi(-) and W(-) are not
independent if Cov(ey,(€1)) # 0. Similarly we can show-

=, w EY2(9(e1)) [3 Wi(s) dWa(s)
(;Xt—l) (o —1) — E(W'(e1)) (folW1(s)ds)1/2

n(odny — 1) = E1/2(¢2(€1)) fol Wi(s) dWa(s)
(opr = 1) E(W(e))  JIWi(s)ds

13



and if n(1 - b,,) — f then

~ 2 VP w EMA(PX(er)) JLW3(s) dWi(s)
(ZX“) TR (gwieas)

=2

where "
Wi () = Wi(a) - 8 / Wi(s)eC~ ds.
0

Therefore clearly using M-estimators will not make the bootstrap to work in this case.

2. As we have shown in Theorem 3.3, it is obvious that if errors come from the domain of
attraction of a stable law with index o € (0,2] and E(e}) = co we will have

b gy wa, B e)) 3 8(s) AW ()
an‘/—ﬁ(¢M ¢M) ; E(¢/(€1)) Ofols*z(s)ds .

Therefore bootstrap will fail in this case too. Clearly this is true even for the case E(e?) < oo.
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