
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Learn From Thy Neighbor: Parallel-Chain and 
Regional Adaptive MCMC 

 
by 

 
V. Radu Craiu 

Department of Statistics 
University of Toronto 

 
and 

 
Jeffrey S. Rosenthal  

Department of Statistics 
University of Toronto 

 
and 

 
Chao Yang 

Department of Statistics 
University of Toronto 

 
 

Technical Report No. 0807 July 30, 2008 

 
TECHNICAL REPORT SERIES 

University of Toronto 
Department of Statistics



Learn From Thy Neighbor: Parallel-Chain and

Regional Adaptive MCMC

Radu V. Craiu

Department of Statistics

University of Toronto

Toronto, ON, M5S 3G3, Canada

craiu@utstat.toronto.edu

Jeffrey Rosenthal

Department of Statistics

University of Toronto

Toronto, ON M5S 3G3, Canada

jeff@math.toronto.edu

Chao Yang

Department of Statistics

University of Toronto

Toronto, M5S 3G3, Canada

chaoyang@math.toronto.edu

July 2008; last revised April 2009

Abstract

Starting with the seminal paper of Haario, Saksman and Tamminen (Haario

et al. (2001)), a substantial amount of work has been done to validate adaptive

Markov chain Monte Carlo algorithms. In this paper we focus on two practi-

cal aspects of adaptive Metropolis samplers. First, we draw attention to the

deficient performance of standard adaptation when the target distribution is

multi-modal. We propose a parallel chain adaptation strategy that incorpo-

rates multiple Markov chains which are run in parallel. Second, we note that
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the current adaptive MCMC paradigm implicitly assumes that the adaptation is

uniformly efficient on all regions of the state space. However, in many practical

instances, different “optimal” kernels are needed in different regions of the state

space. We propose here a regional adaptation algorithm in which we account

for possible errors made in defining the adaptation regions. This corresponds to

the more realistic case in which one does not know exactly the optimal regions

for adaptation. The methods focus on the random walk Metropolis sampling

algorithm but their scope is much wider. We provide theoretical justification

for the two adaptive approaches using the existent theory build for adaptive

Markov chain Monte Carlo. We illustrate the performance of the methods us-

ing simulations and analyze a mixture model for real data using an algorithm

that combines the two approaches.

Keywords: Adaptive Markov chain Monte Carlo, Metropolis sampling, random

walk Metropolis sampling , parallel chains, regional adaptation.

1 Introduction

Markov chain Monte Carlo (MCMC) techniques have become an important tool in

the statistician’s arsenal for solving complex analyses. One of the most widely used

algorithms is the Metropolis (Metropolis et al., 1953) and its generalization, the

Metropolis-Hastings (MH) (Hastings, 1970) sampler. If the goal is to sample from a

distribution π with support S, the MH sampler is started with a random value X0 ∼ µ

and, at each iteration t, a proposal Y is drawn from a proposal distribution Q(y|Xt)

with density q(y|Xt) and is retained as the next state of the chain with probability

α(Xt, Y ) = min
{

1, π(Y )q(Xt|Y )
π(Xt)q(Y |Xt)

}

. If q(y|x) is the density of y = x + ǫ where ǫ has a

symmetric distribution, we obtain the random walk Metropolis algorithm.

In order to design an efficient Metropolis algorithm it is necessary to carefully

adapt the parameters of the proposal distribution Q so that the performance of the

algorithm is optimal (note that there are multiple definitions of “optimal” available).

On one hand one can argue that many modern MCMC algorithms incorporate a cer-
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tain notion of local adaptation in their design, e.g. Gilks et al. (1998), Liu et al.

(2000) and Craiu and Lemieux (2007), Green and Mira (2001), Eidsvik and Tjelme-

land (2006). In this paper, we refer to a more global version of adaptation which

is based on learning the geography of π “on the fly” from all the samples available

up to the current time t. Such an approach violates the Markovian property as the

subsequent realizations of the chain depend not only on the current state but also on

all past realizations. This implies that one can validate theoretically this approach

only if one is able to prove from first principles that the adaptive algorithm is in-

deed sampling from π. In Haario et al. (2001) the authors provide such a theoretical

justification for adapting the covariance matrix Σ of the Gaussian proposal density

used in a random walk Metropolis. They continually adapt Σ using the empirical

distribution of the available samples. Their choice of adaptation is motivated by the

optimal results proved by Roberts et al. (1997) and Roberts and Rosenthal (2001).

Subsequently, the convergence results of adaptive algorithms have been made more

general in Andrieu and Robert (2001), Andrieu et al. (2005), Andrieu and Moulines

(2006), Atchade and Rosenthal (2005), and Roberts and Rosenthal (2007). An adap-

tive algorithm for the independent Metropolis sampler was proposed by Gasemyr

(2003) and Haario et al. (2005) extended their previous work to Metropolis-within-

Gibbs sampling. A class of quasi-perfect adaptive MCMC algorithms is introduced

by Andrieu and Atchade (2006) and a nice tutorial on adaptive methods is given by

Andrieu and Thoms (2008). Alternative approaches to adaptation within MCMC

can be found in Brockwell and Kadane (2005), Nott and Kohn (2005), Giordani and

Kohn (2006). We quote from Giordani and Kohn (2006):

Although more theoretical work can be expected, the existing body of

results provides sufficient justification and guidelines to build adaptive

MH samplers for challenging problems. The main theoretical obstacles

having been solved, research is now needed to design efficient and reliable

adaptive samplers for broad classes of problems.

In the present paper we try to close some of the gap between theory and practice by
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focusing on the practical aspects of adaptive MCMC (AMCMC). More precisely, we

discuss complications arising when using AMCMC, especially adaptive random walk

Metropolis, for sampling from multi-modal targets and also when the optimal proposal

distribution is regional, i.e. the optimal proposal should change across regions of the

state space. In the next section we discuss the inter-chain adaptation. In Section

3 we discuss the regional adaptation. The theoretical challenge is to show that the

algorithms proposed here fall within the scope of general theorems that are used to

validate adaptive MCMC. These results are presented in Section 4 while simulation

examples and a real data analysis are shown in Section 5. We close with discussion

of further research.

2 Inter-chain Adaptation (INCA)

To begin, consider a simulation setting where the target distribution is a mixture of

two ten-dimensional Gaussian distributions. More precisely, the target distribution

is

π(x|µ1, µ2, Σ1, Σ2) = 0.5n10(x; µ1, Σ1) + 0.5n10(x; µ2, Σ2),

with nd(x; µ, Σ) denoting the density of a d-dimensional Gaussian random variable

with mean µ and covariance matrix Σ and where µ1 = (0.03,−0.06,−0.24,−1.39, 0.52,

0.61, 1.26,−0.71, −1.38,−1.53)T , µ1i−µ2i = 6, ∀1 ≤ i ≤ 10, Σ1 = I10 and Σ2 = 4I10.

In Figure 1 we present the results of a simulation in which we applied the adaptive

Metropolis sampler of Haario et al. (2001) with an initialisation period of 10,000

samples. The chain is started in one of the target’s modes (the one corresponding to

µ1). Although the final sample size is N = 250, 000, we can see that the chain does

not visit the second mode. In this case, the adaptation can not improve much on the

unadapted version of the Metropolis sampler as the second mode ”is invisible” in the

initialization period and it will likely take a long time for a chain incorrectly adapted

to a unimodal distribution to discover the second high probability region.

In the classic MCMC literature difficulties related to sampling from a multi-modal
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Figure 1: Boxplots of N=250,000 samples obtained using a single-chain adaptive

Metropolis; each boxplot correspond to one component of the 10-dimensional random

vector. The red lines represent the entries of the target’s mean vector. The chain does

not visit the second mode of the target.
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Figure 11: Scatterplot of the 250,000 samples for (π1, π2).
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Figure 12: LOH Data Example: The evolution of BGR’s R statistics for 5 mixed

RAPT chain; the dotted line represents the threshold 1.1.
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Figure 13: The total number of switches times for the five parallel Mixed RAPT chains

(run for 60,000 iterations each) vs the number of switch times of a single Mixed RAPT

(run for 300,000 iterations).

monitor the number of switches between S1 and S2. We run a single Mixed RAPT

algorithm for 300,000 iterations, and independently five parallel Mixed RAPT algo-

rithms for 60,000 iterations each. In Figure 13 we plot the total number of switches

for the five parallel processes up to time t and the switch time for the single run up

to time 5t for a fair comparison. One can see that the Mixed RAPT performs better

together with INCA than by itself.

6 Conclusions and Further Work

This work is concerned with the practical aspects of adaptive MCMC, particularly

related to sampling from multimodal distributions. The aim for most of our the-

oretical results is the adaptive random walk Metropolis since it is one of the most

used algorithms in practice. The inter-chain adaptation strategy is widely applicable

and could be used for a large number of adaptive MCMC algorithms with significant
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potential gains. The regional adaptation algorithm proposed here has been discussed

in the context of two separate regions. Evidently, the construction can be generalized

but one has to keep in mind that besides good sampling properties within each region

the sampler should be also required to visit all regions often enough. In the case of

many regions this could present complications.
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